
Copyright

by

Zhipeng Jia

2022

1

The Dissertation Committee for Zhipeng Jia Certifies
that this is the approved version of the following dissertation:

Designing Systems for Emerging Serverless Applications

Committee:

Emmett Witchel, Supervisor

Simon Peter

Christopher J. Rossbach

Mahesh Balakrishnan

Jason Flinn

2

Designing Systems for Emerging Serverless Applications

by

Zhipeng Jia

Dissertation
Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
May 2022

3

To my grandparents: unfortunately they cannot witness my achievement

4

Acknowledgements

Pursuing a doctoral degree is for sure the most challenging thing I decided

to do in my twenties. I have to admit, at the beginning, I underestimate the difficulty

of such journey. When I am close to the destination, I truly realize this achievement

is much more than my own’s effort.

Without doubt, my Ph.D. supervisor, Emmett Witchel, is at the top of who

I would like to express my gratitude. Essentially, Emmett taught me how to do

systems research: he guided me to think critically for my research projects; he

helped me to improve my paper writing and conference presentations; and most

importantly, he inspired me about the nature of good research.

Beside my advisor, members of my Ph.D. committee are the same important

to make this dissertation happen. I would like to thank them: Christopher J.

Rossbach, Simon Peter, Jason Flinn, and Mahesh Balakrishnan. Thanks for all

the time and effort you spent with my dissertation! Other than the dissertation,

several of them also guided me at different stages of my graduate school life. Chris

encouraged and inspired me many times going back to his Advanced Operating

Systems course. Mahesh shared with me many advice on career choice. I would

also like to thank James Bornholt for being committee member of my Research

Preparation Exam.

Although the journey towards Ph.D. is not easy, my five-year graduate

5

school life is full of joy with my friends at Austin. I would like to thank members

from OSA research group: Zhiting Zhu, Yige Hu, and Tyler Hunt. We spent great

time together discussing research problems and life issues. I would also like to

thank Vance Miller and Ariel Szekely, for working with our group on GPU security

project. There are other fellow graduate students at UT Austin I would like to thank

for their time spent with me: Zhen Chen, Zeyuan Hu, Xinrui Hua, Xiangru Huang,

Jiahui Liu, Zhan Shi, Jiaru Song, Wei Sun, Yifan Sun, Yingchen Wang, Lemeng Wu,

Hangchen Yu, Yuxuan Zhang, Xingyi Zhou, and Jiacheng Zhuo.

Finally, I would like to thankmy parents for supportingme, both emotionally

and financially. In my late-twenties, I start to realize family members are ones who

will listen to all kinds of my life complaints. It is a pity that in the past three years,

due to global COVID pandemic, I had no chance to meet with them in person.

贾志鹏 (Zhipeng Jia)

The University of Texas at Austin

May, 2022

6

Abstract

Designing Systems for Emerging Serverless Applications

Zhipeng Jia, Ph.D.
The University of Texas at Austin, 2022

Supervisor: Emmett Witchel

Serverless computing has become increasingly popular for building scal-

able cloud applications. Its function-as-a-service (FaaS) paradigm allows users to

upload cloud functions that are executed on a provider’s infrastructure. Serverless

infrastructure is highly elastic; users can smoothly invoke thousands of concurrent

functions in the cloud. As a result, serverless computing has gained success in

massively parallel workloads such as video processing, data analytics, machine

learning, and distributed compilation.

However, there are emerging cloud applications that the current serverless

infrastructure cannot support with efficiency and high performance. We identify

two issues in the current infrastructure preventing serverless computing to support

broader applications. First, invocation latencies of serverless functions are too high

for latency-sensitive workloads, for example, interactive microservices. Second,

fault tolerance is very difficult for stateful serverless applications, because serverless

functions can fail during their execution while leaving critical state inconsistent.

7

This dissertation demonstrates system designs to address these two chal-

lenges. We first propose Nightcore, a low-latency FaaS runtime optimized for

interactive microservices. Nightcore achieves low latency and high throughput by

carefully considering various factors that have microsecond-scale overheads. We

then propose Boki, a novel FaaS runtime for stateful serverless applications. Boki

exports a shared log API for its functions, so that stateful serverless applications

can use Boki shared logs to manage their state with durability, consistency, and

fault tolerance.

8

Table of Contents

Acknowledgments 5

Abstract 7

List of Tables 12

List of Figures 14

Chapter 1. Introduction 17
1.1 Serverless computing for latency-sensitive microservices 19
1.2 Stateful serverless computing with shared logs 20
1.3 Organization of the dissertation 22

Chapter 2. The Current State of Serverless Computing 24
2.1 Challenge 1: High invocation latency in FaaS 26
2.2 Challenge 2: State consistency with fault tolerance 28

Chapter 3. Nightcore: Serverless Computing for Latency-Sensitive,
Interactive Microservices 31

3.1 Hunting for the “killer microseconds” 33
3.2 Nightcore design . 36

3.2.1 System architecture . 36
3.2.2 Processing function requests 41
3.2.3 Managing concurrency for function executions (τk) 43

3.3 Implementation . 44
3.3.1 Nightcore’s engine . 45
3.3.2 Function workers . 49

3.4 Evaluation . 50
3.4.1 Methodology . 51

9

3.4.2 Benchmarks . 55
3.4.3 Analysis . 59
3.4.4 Discussion . 61

3.5 Microservice background . 62
3.6 Summary . 65

Chapter 4. Boki: Stateful Serverless Computing with Shared Logs 67
4.1 Shared log approach for stateful serverless 70

4.1.1 Use cases . 71
4.1.2 Technical challenges . 72

4.2 Boki’s LogBook API . 73
4.3 Boki design . 76

4.3.1 Metalog is “the answer to everything” in Boki 76
4.3.2 Architecture . 78
4.3.3 Workflow of log appends 81
4.3.4 From physical logs to LogBooks 83
4.3.5 Reconfiguration protocol 87

4.4 Boki support libraries . 88
4.4.1 BokiFlow: fault-tolerant workflows 88

4.4.1.1 Distinctions between BokiFlow and Beldi. 90
4.4.1.2 Transactions in BokiFlow 93
4.4.1.3 Walk-through of BokiFlow operations 93

4.4.2 BokiStore: durable object storage 95
4.4.3 BokiQueue: message queues 97
4.4.4 Optimizing log replay with auxiliary data 98
4.4.5 Garbage collector functions 99

4.5 Implementation . 100
4.5.1 Storage backend . 101

4.6 Evaluation . 102
4.6.1 Microbenchmarks . 103
4.6.2 BokiFlow: fault-tolerant workflows 107
4.6.3 BokiStore: durable object storage 109

10

4.6.4 BokiQueue: message queues 112
4.6.5 Analysis . 113

4.7 Summary . 120

Chapter 5. Related Work 122
5.1 Serverless computing . 122
5.2 Microservices . 123
5.3 System supports for microsecond-scale I/Os 124
5.4 Stateful serverless computing . 124
5.5 Distributed shared logs . 125
5.6 Fault-tolerant workflows . 126

Chapter 6. Conclusion 127

Bibliography 129

Vita 155

11

List of Tables

3.1 Invocation latencies of a warm nop function. 32
3.2 Microservice workloads in evaluation (from [38, 100]). 51
3.3 Percentage of internal function calls (§ 3.4.1). 52
3.4 Evaluation of Nightcore’s scalability, where n worker servers run

n times the base QPS input. For each workload, the base QPS is
selected to be close to the saturation throughput when using one
server. 57

3.5 Comparison of Nightcore with other systems using 8 VMs. Median
and 99% tail latencies are shown in milliseconds. For each workload,
the saturation throughput of the RPC servers is the baseline QPS
(1.00x in the table) for comparison. 57

3.6 Breakdowns of stacktrace samples, when running SocialNetwork
(write) at 1200 QPS on one VM. Unix sockets are used by Thrift
RPC servers for inter-thread synchronizations. 61

4.1 Comparison between vCorfu [154], Scalog [96], and Boki. Boki’s
metalog provides a unified approach for log ordering, read consis-
tency, and fault tolerance (§ 4.3.1). 77

4.2 Boki’s throughput in append-only microbenchmark. Boki is con-
figured to use JournalStore backend for storing LogBook records
(§ 4.6.1). 104

4.3 Comparison of Boki’s different storage backends, using append-
onlymicrobenchmark (§ 4.6.1). Using Boki’s on-disk journal achieves
stronger durability, though results in slightly lower throughput.
Also note JournalStore achieves the lowest tail latency among all
options. 105

4.4 Boki’s read latencies under different scenarios (§ 4.6.1). 106
4.5 Comparison of BokiQueue with Amazon SQS [8] and Pulsar [10]

(§ 4.6.4). Boki is configured with Tkrzw as storage backend, which
achieves best performance for BokiQueue. Throughput is measured
in 103 message/s. Delivery latency is the duration that a message
stays in the queue. Latencies are shown in the form of “median
(99% tail)”. For each row in the table, best performing result is in
bold. 113

12

4.6 The importance of log replay optimization using auxiliary data
(§ 4.6.5). The table shows Retwis throughput (in Op/s). 114

4.7 Locality impact from LogBook engines (§ 4.6.5). The table shows
Retwis throughput (in Op/s), when adjusting the percentage of
reads processed by local LogBook engines. 115

4.8 LogBook engines maintain local cache for log records, and the
cache size has performance impact for Boki’s applications (§ 4.6.5).
The table shows Retwis throughput (in Op/s). 115

4.9 Append throughput (in KOp/s) when log appends are distributed
over 128 LogBooks under a uniform or Zipf distribution. 116

4.10 Scaling read-only transactions with LogBook engines (§ 4.6.5). The
experiment runs Retwis workload under a fixed write rate. 116

13

List of Figures

2.1 In the FaaS paradigm, users can invoke cloud functions that are
executed on a cloud provider’s infrastructure (e.g., AWS Lambda [17]). 25

2.2 For a stateful serverless application, its functions will interactive
with cloud storage services for maintaining application states. How-
ever, serverless functions could fail at any point of their execution,
making it different to achieve state consistency with fault tolerance. 26

2.3 Example of a conference registration app using serverless work-
flows. This app uses cloud database to store registration states.
Failures could happen within a function, or between the two func-
tions. When failure happens, data stored in cloud database can be
inconsistent (§ 2.2). 28

3.1 RPC graph of uploading new post in a microservice-based Social-
Network application [100]. This graph omits stateful services for
data caching and data storage. 33

3.2 Architecture of Nightcore (§ 3.2.1). 36
3.3 Diagram of an internal function call (§ 3.2.2). 42
3.4 CPU utilization timelines of OpenFaaS, and Nightcore (without

and with managed concurrency), running SocialNetwork microser-
vices [100] at a fixed rate of 500 QPS for OpenFaaS and 1200 QPS
for Nightcore. 45

3.5 Event-driven I/O threads in Nightcore’s engine (§ 3.3.1). 46
3.6 Comparison of Nightcore with RPC servers and OpenFaaS using

one VM. 54
3.7 Nightcore running SocialNetwork (write) with load variations. The

upper chart shows tail latencies under changing QPS, the middle
chart shows how the concurrency hint (τk) of the post microser-
vice changes with time, and the lower chart is a timeline of CPU
utilization. 56

3.8 Comparison of Nightcore with RPC servers, running SocialNetwork
(write) using one VM. Designs of Nightcore are progressively added
to show their effectiveness (§ 3.4.3). 59

4.1 Boki’s LogBook API (§ 4.2). 74

14

4.2 Architecture of Boki (§ 4.3.2), where red arrows show the workflow
of log appends (§ 4.3.3). 78

4.3 An example showing how the metalog determines the total order
of records across shards. Each metalog entry is a vector, whose
elements correspond to shards. In the figure, log records between
two red lines form a delta set, which is defined by two consecutive
vectors in the metalog (§ 4.3.3). 81

4.4 Workflow of LogBook reads (§ 4.3.4): 1⃝ Locate a LogBook engine
stores the index for the physical log backing book_id = 3; 2⃝ Query
the index row (book_id, tag) = (3, 2) to find the metadata of the
result record (seqnum = 9 in this case); 3⃝ Check if the record is
cached; 4⃝ If not cached, read it from storage nodes. 83

4.5 Consistency checks by comparing metalog positions (§ 4.3.4). For a
function, if reading from a log index whose progress is behind its
metalog position, it could see stale states. For example, function
h has already seen record X , so that it cannot perform future log
reads through index A. 84

4.6 Pseudocode demonstrating BokiFlow’s write and invoke functions
(§ 4.4.1.3). hashLogTag computes a hashing-based log tag for the
provided tuple. Variable ID stores the unique ID of the current
workflow. Variable STEP stores the step number, which is increased
by 1 for every operations within the workflow. 89

4.7 Locks in BokiFlow (§ 4.4.1). 92
4.8 Demonstration of BokiStore API (§ 4.4.2). 96
4.9 Transactions in BokiStore (§ 4.4.2). TxnB fails due to conflict with

TxnA. For TxnC, despite its write set overlaps with TxnB’s, TxnC
still succeeds due to the failure of TxnB. 97

4.10 Use auxiliary data to cache object views in BokiStore, which can
avoid a full log replay (§ 4.4.4). 99

4.11 Log append latencies during reconfiguration (§ 4.6.1). The x-axis
shows the timeline (in seconds). The reconfiguration starts at t = 0. 106

4.12 Comparison of BokiFlow with Beldi [160]. BokiFlow takes ad-
vantage of the LogBook API. “Unsafe baseline” refers to running
workflows without Beldi’s techniques, where it cannot guarantee
exactly-once semantics or support transactions (§ 4.6.2). 107

4.13 Microbenchmarks of Beldi primitive operations (§ 4.6.2). Main bars
show median latencies, while error bars show 99% latencies. . . . 107

4.14 Evaluating BokiStore on Retwis workload (§ 4.6.3). Boki uses Jour-
nalStore as storage backend. 109

15

4.15 Comparison of BokiStore with Cloudburst [146]. We measure the
latencies and throughput for put and get operations, using different
numbers of concurrent clients. In the latency charts, solid lines
show median latencies, and dashed lines show 99% tail latencies.
BokiStore not only provides stronger consistency guarantees, but
also achieves higher performance than Cloudburst (§ 4.6.3). 111

4.16 Demonstration of garbage collection (GC) in BokiStore and Bok-
iQueue (§ 4.6.5). All figures show the state of one storage node: the
upper chart shows CPU time; and the lower chart shows disk uti-
lization and write throughput. One storage node has 4 CPU cores.
For BokiStore experiments, we show a duration of 120 seconds in
the middle of running. For BokiQueue experiments, we show a
duration of 50 seconds. 118

4.17 Sensitivity study of LogBook latencies to reconfiguration frequency
(§ 4.6.5). Reconfigurations have little impact on log read latencies,
but can significantly affect tail latencies of log appends when they
are frequent. In all tested frequencies, throughput of log reads and
appends is not affected (same as “no reconfiguration”). Data are
collected over a 5-minute period. 119

16

Chapter 1

Introduction

Serverless computing is becoming popular for building cloud-native applica-

tions. Its function-as-a-service (FaaS) paradigm allows developers to execute their

cloud functions on a cloud provider’s infrastructure. The cloud provider is responsi-

ble for allocating, scaling, and monitoring execution environment and resources for

users’ functions. By providing elastic compute resources with fine-grained billing,

serverless computing has shown success in massively parallel workloads, for exam-

ple, video processing [80, 99], data analytics [110, 138], machine learning [92, 145],

and distributed compilation [98].

While the current serverless infrastructure is attractive for high-throughput,

stateless applications, it fails to support low-latency or stateful applications effi-

ciently. Mainstream FaaS systems have relatively high runtime overhead. For

example, invoking a warm nop function on AWS Lambda [17] has a median la-

tency of 10.4ms (Table 3.1). Overheads of tens of milliseconds are negligible for

batch processing workloads, where function bodies normally takes seconds to

execute. But for latency-sensitive applications, such as interactive microservices,

millisecond-scale overheads become unacceptable: measurements show that using

FaaS for microservices can incur up to 12× overhead compared to non-serverless

deployments [100, 109].

17

Moreover, in the current serverless environment, state management is

difficult for stateful applications requiring high performance and strong data con-

sistency. The current option for serverless state management is to rely on other

cloud storage services such as object storage (e.g., Amazon S3 [24]) and cloud

databases (e.g., DynamoDB [6]). When stateful applications are composed of mul-

tiple functions and serverless functions could fail at any point in their execution,

existing state management options struggle to achieve strong consistency and fault

tolerance while maintaining high performance and scalability [108,142,160]. There

is an urgent need to re-think how to provide storage APIs for stateful serverless

applications to manage critical state with strong consistency and fault tolerance.

This dissertation explores designs of serverless systems aiming to support

emerging cloud applications that require microsecond-scale latencies and state

storage with fault tolerance:

• To achieve low latencies for FaaS, we carefully consider engineering decisions

for high performance without breaking the serverless paradigm. We present

our low-latency FaaS runtime Nightcore in Chapter 3.

• To address data consistency and fault tolerance for serverless state man-

agement, we explore the potential of log-based storage in the serverless

environment. We present our stateful serverless proposal Boki in Chapter 4.

18

1.1 Serverless computing for latency-sensitive microservices

As high-speed networks become prevalent in datacenters, cloud applications

such as online services start to demand microsecond-scale processing latencies [134,

148]. When the scale of an online service grows (consider nowadays that a social

network service needs to serve billions of users), the microservice architecture [100]

becomes a practical engineering approach for building large-scale online services.

In a microservice architecture, a large online application is built by connecting

loosely coupled, single-purpose microservices, which communicate with each

other via pre-defined APIs, mostly using remote procedure calls (RPC). While the

interactive nature of online services implies an end-to-end service-level objectives

(SLO) of a few tens of milliseconds, individual microservices face more strict latency

SLOs – at the sub-millisecond-scale for leaf microservices [148, 165].

Previously, implementing individual microservices as RPC servers is the

dominant approach for building microservice-based applications. With the popular-

ity of serverless cloud computing, FaaS provides a newway of buildingmicroservice-

based applications [12, 22, 56, 68], having the benefit of greatly reduced operational

complexity. However, readily available FaaS systems have invocation latency

overheads ranging from a few to tens of milliseconds [16, 70, 123] (also see Ta-

ble 3.1), making them a poor choice for latency-sensitive interactive microservices,

where RPC handlers only run for hundreds of microseconds to a few millisec-

onds [100, 122, 148, 149].

Nightcore [109] is a serverless function runtime designed and engineered

to combine high performance with container-based isolation. Nightcore supports

19

functions written in C/C++, Go, Node.js, and Python. To efficiently support latency-

sensitive microservices, Nightcore has two performance goals which are not ac-

complished by existing FaaS systems: (1) invocation latency overheads are well

within 100µs; (2) the invocation rate must scale to 100K/s with a low CPU usage. To

meet its performance goals, Nightcore’s design carefully considers various factors

having microsecond-scale overheads, including scheduling of function requests,

communication primitives, threading models for I/O, and concurrent function

executions.

We use four realistic microservice workloads to evaluate Nightcore. Com-

pared to OpenFaaS [47], a popular open-source FaaS runtime, Nightcore achieves

4.53×–10.5× higher throughput, while reducing tail latency by up to 10×.

1.2 Stateful serverless computing with shared logs

One key challenge in the current serverless paradigm is the mismatch

between the stateless nature of serverless functions and the stateful applications

built with them [104, 140, 146, 163]. Serverless applications are often composed of

multiple functions, where application state is shared. However, managing shared

state using current options, e.g., cloud databases or object stores, struggles to

achieve strong consistency and fault tolerance while maintaining high performance

and scalability [142, 160].

The shared log [83, 96, 154] is a popular approach for building storage

systems that can simultaneously achieve scalability, strong consistency, and fault

tolerance [82, 84, 85, 88]. A shared log offers a simple abstraction: a totally ordered

20

log that can be accessed and appended concurrently. While simple, a shared log can

efficiently support state machine replication [141], the well-understood approach

for building fault-tolerant stateful services. The shared log API also frees distributed

applications from the burden of managing the details of fault-tolerant consensus,

because the consensus protocol is hidden behind the API [82]. Providing shared

logs in FaaS can address the challenge of data consistency with fault tolerance for

stateful serverless applications.

Boki [108] is a FaaS runtime that exports the shared log API to functions for

storing shared state. Boki realizes the shared log API with a LogBook abstraction,

where each function invocation is associated with a LogBook. For a Boki application,

its functions share a LogBook, allowing them to manage application state with

durability, consistency, and fault tolerance.

While Boki’s design is inspired by previous shared log research [82, 83,

96, 154], serverless environment creates new challenges for Boki shared logs. In

particular, serverless shared logs must be able to support diverse usage patterns

efficiently. To satisfy different application needs, Boki’s shared log abstraction

(i.e., LogBooks) simultaneously provides high append throughput and low read

latencies. Boki stores log records over variable numbers of shards to achieve

high append throughput, while maintaining record cache on function nodes for

low read latencies. In the serverless environment, resources are often shared by

many applications. For best resource efficiency, Boki can support a high density

of LogBooks with minimal metadata overheads, which is achieved by virtualizing

application-facing LogBooks over internal physical shared logs.

21

Boki’s design needs mechanisms for consistency and fault tolerance, and

the metalog provides solutions to both. The metalog contains metadata that totally

orders records for a Boki shared log. Boki performs log reads through log indices

that are built in accordance with the metalog, where metalog positions are used to

enforce read consistency. Boki handles machine failures by reconfiguration, and

the metalog simplifies Boki’s reconfiguration protocol. As the metalog exclusively

controls the progress of a Boki shared log, sealing all the metalogs will allow a new

configuration to be safely installed.

To make writing Boki applications easier, we build support libraries on top

of the LogBook API aimed at three different serverless use cases: fault-tolerant

workflows (BokiFlow), durable object storage (BokiStore), and serverless message

queues (BokiQueue). Boki support libraries leverage techniques from Beldi [160],

Tango [84], and vCorfu [154], while adapting them for the LogBook API. We use

realistic cloud workloads to evaluate Boki support libraries, and our results suggest

Boki can speed up important serverless applications by up to 4.2×.

1.3 Organization of the dissertation

The rest of this dissertation is organized as follows. Chapter 2 provides

background about serverless computing, where we also discuss what are challenges

faced by today’s serverless infrastructure. Chapter 3 introduces the design and

implementation of Nightcore, our low-latency FaaS runtime optimized for latency-

sensitive, interactive microservices. It also includes evaluation of Nightcore with

realistic microservice workloads. Chapter 4 presents Boki, our proposal using

22

shared logs to address challenges in stateful serverless computing. It details the

design of Boki API, runtime, and Boki support libraries, It also evaluates Boki

with selective cloud workloads. Chapter 5 discusses related work, and Chapter 6

concludes the dissertation.

23

Chapter 2

The Current State of Serverless Computing

Cloud computing has become essential to computing’s future [81]. Before

cloud computing’s popularity, traditional distributed applications were built on

servers, which were the basic units of resource for compute and storage. In early

days of cloud computing, cloud providers offered virtual machines (VMs) to ease

the migration of server-based distributed applications to the cloud infrastructure.

Recently, serverless computing offers a new paradigm for building cloud-

native applications [111]. In the new paradigm, distributed applications are built

around fully managed cloud services, instead of servers or VMs. Those cloud

services provide high-level abstractions for compute and storage, and are directly

managed by the cloud provider. Relying on fully managed services can free cloud

users from the burden of provisioning, maintaining, and monitoring the underlying

machines running their applications.

Function-as-a-service (FaaS) plays a central role in the serverless paradigm.

FaaS provides a simple yet powerful programming interface of stateless functions.

Users can invoke their serverless functions which will be executed on the cloud

infrastructure (Figure 2.1). AWS Lambda [17], Azure Functions [19], and Google

Cloud Functions [23] are examples of commercial FaaS offerings.

24

Function-as-a-Service (FaaS)

Invoke cloud functions

def my_funcion(a, b):
 return a * b

Figure 2.1: In the FaaS paradigm, users can invoke cloud functions that are executed
on a cloud provider’s infrastructure (e.g., AWS Lambda [17]).

Current FaaS offerings provide two major benefits for cloud applications.

The first benefit is elasticity. As the FaaS infrastructure is designed to support

applications of diverse scale, developers need to do no extra work when their FaaS-

based applications simply need more compute resource (i.e., more concurrently

running functions). The second benefit is the pay-as-you-go billing model. Users of

FaaS only pay for the time duration when their functions are actually running, and

the billing granularity can be as low as one millisecond for individual functions [46].

These two benefits make FaaS particularly attractive for massively parallel but

bursty workloads [80, 98, 99, 110, 138].

Unfortunately, FaaS by itself can only support stateless applications, but

many important applications are inherently stateful. In the current serverless

paradigm, stateful applications will use FaaS to execute their application logic,

while relying on cloud storage services to store their application state. Cloud

providers offer various storage services for different use cases, for example, object

storage (e.g., Amazon S3 [24]), cloud database (e.g., DynamoDB [6]), and message

queues (e.g., Amazon SQS [8]). Serverless functions of stateful applications will

interact with these services to maintain their state (Figure 2.2).

25

Amazon S3

Amazon
DynamoDB

Amazon Simple
Queue Service

Stateful function

Serverless application

Stateful function

Stateful function

?

?

?

Figure 2.2: For a stateful serverless application, its functions will interactive with
cloud storage services for maintaining application states. However, serverless
functions could fail at any point of their execution, making it different to achieve
state consistency with fault tolerance.

Serverless infrastructure in its current state is attractive for various cloud

workloads, but there are emerging cloud applications for which serverless comput-

ing is not currently a viable option, either due to performance or functionality. We

identify two challenges that prevent serverless computing to be adopted in broader

applications. These two challenges faced by today’s serverless infrastructure moti-

vate system designs presented in this dissertation.

2.1 Challenge 1: High invocation latency in FaaS

To invoke a serverless function, the FaaS runtime has to find a machine

to execute it. Serverless functions are normally executed within isolated environ-

ments, for example, containers or lightweight VMs [75, 143]. Individual serverless

functions often have to bootstrap specific runtime environments, e.g., a Python

26

environment. Because allocating and bootstrapping the execution environment can

take a significant amount of CPU time, re-using a previous environment for later

function invocations can improve overall performance. When an incoming function

invocation is scheduled to use a previous environment, we call it a warm-start

invocation. Otherwise, when the incoming invocation requires a new execution

environment, we call it a cold-start invocation. Optimizing cold-start latency (i.e.,

the time for creating new execution environment) is one important research topic

in serverless computing [75, 97].

However, even if we can avoid cold-start latencies by re-using execution

environments, FaaS systems still incur runtime overheads for function invocations,

e.g., caused by dispatching the function request to the executor machine. We use

invocation latency to denote this intrinsic overhead from the underlying FaaS

system. Invocation latencies cannot be avoided even for warm-start invocations.

Unfortunately, mainstream FaaS systems have invocation latency over-

heads ranging from a few to tens of milliseconds [16, 70, 123] (also see Table 3.1).

Millisecond-scale overheads could be negligible for certain workloads, but certainly

become unacceptable for latency-sensitive workloads. For example, it is popular

to build online services with the microservice architecture, and the programming

model of FaaS is naturally suitable for microservices [100]. But high invocation

latencies from the FaaS runtime make serverless computing impractical for mi-

croservices: measurements show that using FaaS for microservices can incur up to

12× overhead compared to non-serverless deployments [100, 109].

27

Function X
(create person)

uid = read_inc(table=id, key=“id”)

write(table=profile,
key=“name”+uid, “Zhipeng Jia”)

Invoke with uid

Function Y
(append attendees)

append_list(
table=conference, key=“SOSP21”, uid)

?

Cloud
Database

Serverless application

?

Figure 2.3: Example of a conference registration app using serverless workflows.
This app uses cloud database to store registration states. Failures could happen
within a function, or between the two functions. When failure happens, data stored
in cloud database can be inconsistent (§ 2.2).

2.2 Challenge 2: State consistency with fault tolerance

To support stateful applications in the FaaS paradigm, cloud providers offer

various storage services to suit different application needs, e.g., object storage, cloud

databases, and message queues. These cloud storage services are fault-tolerant

by themselves and some of them (such as cloud databases) support strong data

consistency, however, serverless applications still struggle to achieve end-to-end

consistency and fault tolerance for their critical states [142, 160].

This discrepancy arises because serverless functions can fail at any point

during their execution, unbeknownst to external storage services which therefore

cannot respond properly. Even worse, serverless applications often compose mul-

tiple functions for their functionality, e.g., serverless workflows, where function

boundaries further complicate state consistency. We argue that fault tolerance

and data consistency mechanisms used by cloud storage services cannot simply

28

provide strong guarantees for serverless functions interacting with them without

additional infrastructure.

We use a simple example to further explain the issue. Figure 2.3 demon-

strates a conference registration app. This app uses serverless workflows for its

application logic and a cloud database to store the registration state. The workflow

consists of two functions X and Y . Function X is responsible for creating the

attendee’s profile in the database. It generates a uid for the new attendee and then

invokes function Y with the uid. Function Y appends input uid to the attendance

list, which finishes the registration process. If everything goes well, the process of

this serverless workflow is fairly straightforward.

Unfortunately, with the current FaaS infrastructure, failures could happen

at any point of function execution. For example, failures can happen during the

execution of function X , between the two database update statements. Failures

can also happen between function X and Y , in which case function Y is not

successfully invoked. These potential failures can leave the registration state stored

in the database inconsistent, for example, the profile for the new attendee is created

but the uid is not added to the attendance list.

Olive [142] and Beldi [160] are previous studies aiming to address this

challenge within the current cloud infrastructure. Their solutions implement write-

ahead logs using the data model provided by cloud databases. The write-ahead log

records all database statements, which provides protection for failures not within

the database. However, building a logging layer over cloud databases not only

has inevitable implementation complexity, but also incurs significant performance

29

overheads for applications.

Based on observations from Olive and Beldi, we believe it is worthwhile

to directly provide log storage for serverless functions. On the other hand, recent

studies on distributed shared logs [82–84, 96, 154] demonstrate how to build a fault-

tolerant, scalable log storage with high performance, and how applications can

use shared logs for their fault tolerance and data consistency. These prior works

inspire us to explore the potential of shared logs in stateful serverless computing

(§ 4.1).

30

Chapter 3

Nightcore: Serverless Computing for Latency-Sensitive,
Interactive Microservices

Serverless cloud computing enables a new way of building microservice-

based applications [12, 22, 56, 68], having the benefit of greatly reduced operational

complexity (§3.5). Serverless functions, or function as a service (FaaS), provide

a simple programming model of stateless functions. These functions provide a

natural substrate for implementing stateless RPC handlers in microservices, as an

alternative to containerized RPC servers.

However, readily available FaaS systems, such as AWS Lambda [17], Open-

FaaS [47], and Apache OpenWhisk [65], have invocation latency overheads ranging

from a few to tens of milliseconds [16, 70, 123] (see Table 3.1). These latency over-

heads make them a poor choice for latency-sensitive interactive microservices,

where RPC handlers only run for hundreds of microseconds to a few millisec-

onds [100, 122, 148, 149].

This chapter is based on the previous publication: “Nightcore: Efficient and Scalable Server-
less Computing for Latency-Sensitive, Interactive Microservices”, by Zhipeng Jia and Emmett
Witchel in the Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2021), pages 152–166, 2021 [109].

31

FaaS systems 50th 99th 99.9th

AWS Lambda 10.4 ms 25.8 ms 59.9 ms
OpenFaaS [47] 1.09 ms 3.66 ms 5.54 ms

Nightcore (external) 285 µs 536 µs 855 µs
Nightcore (internal) 39 µs 107 µs 154 µs

Table 3.1: Invocation latencies of a warm nop function.

This chapter presents Nightcore [109], a serverless function runtime de-

signed and engineered to combine high performance with container-based isolation.

To efficiently support interactive microservices, Nightcore has two performance

goals which are not accomplished by existing FaaS systems: (1) invocation latency

overheads are well within 100µs; (2) the invocation rate must scale to 100K/s with

a low CPU usage.

We evaluate the Nightcore prototype on four interactive microservices,

each with a custom workload. Three are from DeathStarBench [100] and one is

from Google Cloud [38]. These workloads are originally implemented in RPC

servers, and we port them to Nightcore, as well as OpenFaaS [47] for comparison.

With containerized RPC servers as the baseline, Nightcore achieves 1.36×–2.93×

higher throughput and up to 69% reduction in tail latency, while OpenFaaS only

achieves 29%–38% of baseline throughput and increases tail latency by up to 3.4×

(§ 3.4). The evaluation shows that only by the carefully finding and eliminating

microsecond-scale latencies can Nightcore use serverless functions to efficiently

implement latency-sensitive microservices.

32

NGINX frontend

media
UploadMedia

(320μs)

compose-post
UploadMedia

(140μs)

user
UploadUserWithUserId

(300μs)

compose-post
UploadCreator

(130μs)

unique-id
UploadUniqueId

(330μs)

compose-post
UploadUniqueId

(140μs)

text
UploadText
(3640μs)

url-shorten
UploadUrls
(590μs)

compose-post
UploadUrls
(140μs)

user-mention
UploadUserMention

(690μs)

compose-post
UploadUserMention

(130μs)

compose-post
UploadText
(1710μs)

post-storage
StorePost
(260μs)

user-timeline
WriteUserTimeline

(650μs)

write-home-timeline
FanoutHomeTimelines

(640μs)

social-graph
GetFollows
(230μs)

New
Tweet

End-to-end
response time:
5.10ms

Stateful service

Stateless service (running on FaaS)

External function call

Internal function call

Figure 3.1: RPC graph of uploading new post in a microservice-based SocialNetwork
application [100]. This graph omits stateful services for data caching and data
storage.

3.1 Hunting for the “killer microseconds”

Nightcore has strict performance goals so that any microsecond-or-greater-

scale performance overheads can be impactful, motivating a “hunt for the killer

microseconds” [86] in the regime of FaaS systems.

Existing FaaS systems like OpenFaaS [47] and Apache OpenWhisk [65]

share a generic high-level design: all function requests are received by a frontend

(mostly an API gateway), and then forwarded to independent backends where

function code executes. The frontend and backends mostly execute on separate

servers for fault tolerance, which requires invocation latencies that include at

least one network round trip. Although datacenter networking performance is

improving, round-trip times (RTTs) between two VMs in the same AWS region

33

range from 101µs to 237µs [34]. Nightcore is motivated by noticing the prevalence

of internal function calls made during function execution (see Figure 3.1). An

internal function call is one that is generated by the execution of a microservice, not

generated by a client (in which case it would be an external function call, received

by the gateway). What we call internal function calls have been called “chained

function calls” in previous work [145]. Nightcore schedules internal function calls

on the same backend server that made the call, eliminating a trip to through the

gateway and lowering latency (§ 3.2.2).

Nightcore’s support for internal function calls makes most communication

local, which means its inter-process communications (IPC) must be efficient. Pop-

ular, feature-rich RPC libraries like gRPC work for IPC (over Unix sockets), but

gRPC’s protocol adds overheads of ∼10µs [86], motivating Nightcore to design

its own message channels for IPC (§ 3.2.1). Nightcore’s message channels are

built on top of OS pipes, and transmit fixed-size 1KB messages, because previous

studies [122, 136] show that 1KB is sufficient for most microservice RPCs. Our

measurements show Nightcore’s message channels deliver messages in 3.4µs, while

gRPC over Unix sockets takes 13µs for sending 1KB RPC payloads.

Previous work has shown microsecond-scale latencies in Linux’s thread

scheduler [86, 135, 148], leading dataplane OSes [87, 112, 127, 134, 135, 137] to build

their own schedulers for lower latency. Nightcore relies on Linux’s scheduler,

because building an efficient, time-sharing scheduler for microsecond-scale tasks

is an ongoing research topic [90, 112, 123, 134, 139]. To support an invocation rate

of ≥100K/s, Nightcore’s engine (§ 3.3.1) uses event-driven concurrency [32, 156],

34

allowing it to handle many concurrent I/O events with a small number of OS

threads. Our measurements show that 4 OS threads can handle an invocation

rate of 100K/s. Furthermore, I/O threads in Nightcore’s engine can wake function

worker threads (where function code is executed) via message channels, which

ensures the engine’s dispatch suffers only a single wake-up delay from Linux’s

scheduler.

Existing FaaS systems do not provide concurrency management to appli-

cations. However, stage-based microservices create internal load variations even

under a stable external request rate [106, 156]. Previous studies [48, 106, 155, 156]

indicate overuse of concurrency for bursty loads can lead to worse overall perfor-

mance. Nightcore, unlike existing FaaS systems, actively manages concurrency

providing dynamically computed targets for concurrent function executions that

adjust with input load (§ 3.2.3). Nightcore’s managed concurrency flattens CPU uti-

lization (see Figure 3.4) such that overall performance and efficiency are improved,

as well as being robust under varying request rates (§ 3.4.2).

By leveraging aforementioned optimization techniques, Nightcore manages

to achieve its performance goals. Shown in Table 3.1, the median latency overhead

of internal function calls in Nightcore is 39µs, while the 99-percentile tail is 107µs.

The results demonstrate the runtime overhead of Nightcore is orders of magnitude

better than previous FaaS systems, which is the key for Nightcore’s success in

latency-sensitive microservice-based applications.

35

 Worker server

Gateway ➊

Nightcore’s Engine ➋

Fn1:

Fn2:

FnN: Fn container ❺
(Fn1)

……

Launcher
➒

Fn worker ❻

Nightcore’s
runtime library ❽

fast path for
internal function call

Fn code ❼

➊ Gateway ● Accept external function requests
● Load balance requests to worker servers

➋ Engine

● The main Nightcore process on each worker server, which
communicates with Gateway ➊, launchers ❽, and worker
threads inside Fn workers ❻

● Maintain per-function dispatching queues ❸ and per-request
tracing logs ❹

❸ Dispatching
 queues

● Function requests queued here
● Dispatch function requests to worker threads in Fn worker ❻

❹ Tracing logs ● Track life-cycle of all function invocations, by recording
receive, dispatch, and completion timestamps

❺ Fn container
● Execution environment for individual functions
● Consists of Fn worker ❻ and Launcher ❽ processes

❻ Fn worker
 process

● Multiple worker threads execute user-provided function code
❼, and call a runtime library ❽ for fast, internal function call

● Implementation tailored to each supported programming
language

❼ User-provided
 Fn code

● Stateless function code written in supported programming
language (C/C++, Go, Python, or Node.js)

● Executed on worker threads within Fn worker process ❻

❽ Runtime
 library

● Fast path for internal function call: talk directly with Engine to
enqueue the function call ❸, entirely bypassing Gateway ➊

➒ Launcher ● Launch new Fn worker ❻ or worker threads

Per-Fn dispatching queues ❸

Per-request tracing logs ❹

Req1

Req2

ReqN

……

Fn container ❺
(FnN)

Worker threads

Launcher
➒

Fn worker ❻

Nightcore’s
runtime library ❽

Fn code ❼

Worker threads

Docker
container Process

VM or Bare
metal machine

…………

User-provided
function code

Figure 3.2: Architecture of Nightcore (§ 3.2.1).

3.2 Nightcore design

Nightcore is designed to run serverless functions with sub-millisecond-scale

execution times, and to efficiently process internal function calls, which are gen-

erated during the execution of a serverless function (not by an external client).

Nightcore exposes a serverless function interface that is similar to AWS Lambda:

users provide stateless function handlers written in supported programming lan-

guages. The only addition to this simple interface is that Nightcore’s runtime

library provides APIs for fast internal function invocations.

3.2.1 System architecture

Figure 3.2 depicts Nightcore’s design which mirrors the design of other FaaS

systems starting with the separation of frontend and backend. Nightcore’s frontend

is an API gateway for serving external function requests and other management

36

requests (e.g., to register new functions), while the backend consists of a number

of independent worker servers. This separation eases availability and scalability

of Nightcore, by making the frontend API gateway fault tolerant and horizontally

scaling backend worker servers. Each worker server runs a Nightcore engine

process and function containers, where each function container has one registered

serverless function, and each function has only one container on each worker

server. Nightcore’s engine directly manages function containers and communicates

with worker threads within containers.

Internal function calls. Nightcore optimizes internal function calls locally on

the same worker server, without going through the API gateway. Figure 3.2 depicts

this fast path in Nightcore’s runtime library which executes inside a function

container. By optimizing the locality of dependent function calls, Nightcore brings

performance close to a monolithic design. At the same time, different microservices

remain logically independent and they execute on different worker servers, ensuring

there is no single point of failure. Moreover, Nightcore preserves the engineering

and deployment benefits of microservices such as diverse programming languages

and software stacks.

Nightcore’s performance optimization for internal function calls assumes

that an individual worker server is capable of runningmost function containers from

a single microservice-based application 1. We believe this is justified because we

1Nightcore also needs to know which set of functions form a single application. In practice, this
knowledge comes directly from the developer, e.g., Azure Functions allow developers to organize
related functions as a single function app [43].

37

measure small working sets for stateless microservices. For example, when running

SocialNetwork [100] at its saturation throughput, the 11 stateless microservice

containers consume only 432 MB of memory, while the host VM is provisioned with

16 GB. As current datacenter servers have growing numbers of CPUs and increasing

memory sizes (e.g., AWS EC2 VMs have up to 96 vCPUs and 192 GB of memory), a

single server is able to support the execution of thousands of containers [145, 164].

When it is not possible to schedule function containers on the same worker server,

Nightcore falls back to scheduling internal function calls on different worker servers

through the gateway.

Gateway. Nightcore’s gateway (Figure 3.2 1⃝) performs load balancing across

worker servers for incoming function requests and forwards requests to Nightcore’s

engine on worker servers. The gateway also uses external storage (e.g., Amazon’s

S3) for saving function metadata and it periodically monitors resource utilizations

on all worker servers, to know when it should increase capacity by launching new

servers.

Engine. The engine process (Figure 3.2 2⃝) is the most critical component of

Nightcore for achieving microsecond-scale invocation latencies, because it invokes

functions on each worker server. Nightcore’ engine responds to function requests

from both the gateway and from the runtime library within function containers. It

creates low-latency message channels to communicate with function workers and

launchers inside function containers (§ 3.3.1). Nightcore’s engine is event driven

38

(Figure 3.5) allowing it to manage hundreds of message channels using a small

number of OS threads. Nightcore’s engine maintains two important data structures:

(1) Per-function dispatching queues for dispatching function requests to function

worker threads (Figure 3.2 3⃝); (2) Per-request tracing logs for tracking the life cycle

of all inflight function invocations, used for computing the proper concurrency

level for function execution (Figure 3.2 4⃝).

Function containers. Function containers (Figure 3.2 5⃝) provide isolated envi-

ronments for executing user-provided function code. Inside the function container,

there is a launcher process, and one or more worker processes depending on the

programming language implementation (see § 3.3.2 for details). Worker threads

within worker processes receive function requests from Nightcore’s engine, and

execute user-provided function code. Worker processes also contain a Nightcore

runtime library, exposing APIs for user-provided function code. The runtime library

includes APIs for fast internal function calls without going through the gateway.

Nightcore’s internal function calls directly contact the dispatcher to enqueue the

calls that are executed on the same worker server without having to involve the

gateway.

Nightcore has different implementations of worker processes for each sup-

ported programming language. The notion of “worker threads” is particularly

malleable because different programming languages have different threading mod-

els. Futhermore, Nightcore’s engine does not distinguish worker threads from

worker processes, as it maintains communication channels with each individual

39

worker thread. For clarity of exposition we assume the simplest case in this Sec-

tion (which holds for the C/C++ implementation), where “worker threads” are OS

threads (details for other languages in § 3.3.2).

Isolation in Nightcore. Nightcore provides container-level isolation between

different functions, but does not guarantee isolation between different invocations

of the same function. We believe this is a reasonable trade-off for microservices, as

creating a clean isolated execution environment within tens of microseconds is too

challenging for current systems. When using RPC servers to implement microser-

vices, different RPC calls of the same service can be concurrently processed within

the same process, so Nightcore’s isolation guarantee is as strong as containerized

RPC servers.

Previous FaaS systems all have different trade-offs between isolation and

performance. OpenFaaS [67] allows concurrent invocations within the same func-

tion worker process, which is the same as Nightcore. AWS Lambda [15] does not

allow concurrent invocations in the same container/MicroVM but allows execution

environments to be re-used by subsequent invocations. SAND [77] has two levels

of isolation–different applications are isolated by containers but concurrent invo-

cations within the same application are only isolated by processes. Faasm [145]

leverages the software-based fault isolation provided by WebAssembly, allowing a

new execution environment to be created within hundreds of microseconds, but it

relies on language-level isolation which is weaker than container-based isolation.

40

Message channels. Nightcore’s message channels are designed for low-latency

message passing between its engine and other components, which carry fixed-size

1KB messages. The first 64 bytes of a message is the header which contains the

message type and other metadata, while the remaining 960 bytes are message

payload. There are three types of messages relevant to function invocations:

(1) Dispatch, used by engine for dispatching function requests to worker threads

(4⃝ in Figure 3.3).

(2) Completion, used by function worker threads for sending outputs back to the

engine (6⃝ in Figure 3.3), as well as by the engine for sending outputs of internal

function calls (7⃝ in Figure 3.3).

(3) Invoke, used by Nightcore’s runtime library for initiating internal function calls

(2⃝ in Figure 3.3).

When payload buffers are not large enough for function inputs or outputs, Nightcore

creates extra shared memory buffers for exchanging data. In our experiments, these

overflow buffers are needed for less than 1% of the messages for most workloads,

though HipsterShop needs them for 9.7% of messages. When overflow buffers are

required, they fit within 5KB 99.9% of the time. Previous work [122] has shown

that 1KB is sufficient for more than 97% of microservice RPCs.

3.2.2 Processing function requests

Figure 3.3 shows an example with both an external and internal function

call. Suppose code of Fnx includes an invocation of Fny . In this case, Fny is invoked

via Nightcore’s runtime API (1⃝). Then, Nightcore’s runtime library generates a

41

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Tracing logs

Reqx …….

Nightcore’s
runtime library

FnX code
①

Worker of FnX

Nightcore’s
runtime library

FnY code ⑤

Worker of FnY

Invoke FnY ②

⑧

Gateway

⑦

Invoke FnX

Worker server

.. xFnX:

Reqy ② ④ ⑥

③

FnX

Figure 3.3: Diagram of an internal function call (§ 3.2.2).

unique ID (denoted by reqy) for the new invocation, and sends an internal function

call request to Nightcore’s engine (2⃝). On receiving the request, the engine writes

reqy’s receive timestamp (also 2⃝). Next, the engine places reqy in the dispatching

queue of Fny 3⃝. Once there is an idle worker thread for Fny and the concurrency

level of Fny allows, the engine will dispatch reqy to it, and records reqy’s dispatch

timestamp in its tracing log (4⃝). The selected worker thread executes Fny’s code

(5⃝) and sends the output back to the engine (6⃝). On receiving the output, the

engine records request reqy’s completion timestamp (also 6⃝), and directs the

function output back to Fnx’s worker (7⃝). Finally, execution flow returns back to

user-provided Fnx 8⃝.

42

3.2.3 Managing concurrency for function executions (τk)

Nightcore maintains a pool of worker threads in function containers for

concurrently executing functions, but deciding the size of thread pools can be a

hard problem. One obvious approach is to always create new worker threads when

needed, therebymaximizing the concurrency for function executions. However, this

approach is problematic for microservice-based applications, where one function

often calls many others. Maximizing the concurrency of function invocations

with high fanout can have a domino effect that overloads a server. The problem

is compounded when function execution time is short. In such cases, overload

happens too quickly for a runtime system to notice it and respond appropriately.

To address the problem, Nightcore adaptively manages the number of

concurrent function executions, to achieve the highest useful concurrency level

while preventing instantaneous server overload. Following Little’s law, the ideal

concurrency can be estimated as the product of the average request rate and

the average processing time. For a registered function Fnk, Nightcore’s engine

maintains exponential moving averages of its invocation rate (denoted by λk) and

function execution time (denoted by tk). Both are computed from request tracing

logs. Nightcore uses their product λk · tk as the concurrency hint (denoted by τk)

for function Fnk.

When receiving an invocation request of Fnk, the engine will only dispatch

the request if there are fewer than τk concurrent executions of Fnk. Otherwise,

the request will be queued, waiting for other function executions to finish. In

other words, the engine ensures the maximum concurrency of Fnk is τk at any

43

moment. Note that Nightcore’s approach is adaptive because τk is computed

from two exponential moving averages (λk and tk), that change over time as new

function requests are received and executed. To realize the desired concurrency

level, Nightcore must also maintain a worker thread pool with at least τk threads.

However, the dynamic nature of τk makes it change rapidly (see Figure 3.7), and

frequent creation and termination of threads is not performant. To modulate the

dynamic values of τk, Nightcore allows more than τk threads to exist in the pool,

but only uses τk of them. It terminates extra threads when there are more than 2τk

threads.

Nightcore’s managed concurrency is fully automatic, without any knowl-

edge or hints from users. The concurrency hint (τk) changes frequently at the scale

of microseconds, to adapt to load variation from microsecond-scale microservices

(§ 3.4.2) . Figure 3.4 demonstrates the importance of managing concurrency lev-

els instead of maximizing them. Even when running at a fixed input rate, CPU

utilization varies quite a bit for both OpenFaaS and Nightcore when the runtime

maximizes the concurrency. On the other hand, managing concurrency with hints

has a dramatic “flatten-the-curve” benefit for CPU utilization.

3.3 Implementation

Nightcore’s API gateway and engine consists of 8,874 lines of C++. Function

workers are supported in C/C++, Go, Node.js, and Python, requiring 1,588 lines of

C++, 893 lines of Go, 57 lines of JavaScript, and 137 lines of Python.

Nightcore’s engine (its most performance-critical component) is imple-

44

0
25
50
75

100

0 s 20 s 40 s 60 s

user time (%) sys time (%)OpenFaaS

0
25
50
75

100

0 s 20 s 40 s 60 s

Nightcore (w/o managed concurrency)

0
25
50
75

100

0 s 20 s 40 s 60 s

Nightcore (with managed concurrency)

Figure 3.4: CPU utilization timelines of OpenFaaS, and Nightcore (without and
with managed concurrency), running SocialNetwork microservices [100] at a fixed
rate of 500 QPS for OpenFaaS and 1200 QPS for Nightcore.

mented in C++. Garbage collection can have a significant impact for latency-

sensitive services [158] and short-lived routines [36, 37]. Both OpenFaaS [47] and

Apache OpenWhisk [65] are implemented with garbage-collected languages (Go

and Scala, respectively), but Nightcore eschews garbage collection in keeping with

its theme of addressing microsecond-scale latencies.

3.3.1 Nightcore’s engine

Figure 3.5 shows the event-driven design of Nightcore’s engine as it re-

sponds to I/O events from the gateway and message channels. Each I/O thread

maintains a fixed number of persistent TCP connections to the gateway for re-

45

Gateway

Engine’s
I/O thread #1

Persistent TCP connection
Connected to I/O thread
with message channels

FnYFnX

FnZFnY

FnZFnX

FnZFnX

FnXFnZ

FnYFnX

FnX Function worker thread

FnX Launcher process

Engine’s
I/O thread #2

Engine’s
I/O thread #3

Figure 3.5: Event-driven I/O threads in Nightcore’s engine (§ 3.3.1).

ceiving function requests and sending back responses, while message channels

are assigned to I/O threads with a round-robin policy. Individual I/O threads can

only read from and write to their own TCP connections and message channels.

Shared data structures including dispatching queues and tracing logs are protected

by mutexes, as they can be accessed by different I/O threads.

Event-driven I/O threads. Nightcore’s engine adopts libuv [41], which is built

on top of the epoll system call, to implement its event-driven design. libuv

provides APIs for watching events on file descriptors, and registering handlers for

those events. Each I/O thread of the engine runs a libuv event loop, which polls

for file descriptor events and executes registered handlers.

Message channels. Nightcore’s messages channels are implemented with two

Linux pipes in opposite directions to form a full-duplex connection. Meanwhile,

shared memory buffers are used when inline payload buffers are not large enough

for function inputs or outputs (§ 3.2). Although shared memory allows fast IPC at

46

memory speed, it lacks an efficient mechanism to notify the consumer thread when

data is available. Nightcore’s use of pipes and shared memory gets the best of both

worlds. It allows the consumer to be eventually notified through a blocking read

on the pipe, and at the same time, it provides the low latency and high throughput

of shared memory when transferring large message payloads.

As the engine and function workers are isolated in different containers,

Nightcore mounts a shared tmpfs directory between their containers, to aid the

setup of pipes and shared memory buffers. Nightcore creates named pipes in the

shared tmpfs, allowing function workers to connect. Shared memory buffers

are implemented by creating files in the shared tmpfs, which are mmaped with

the MAP_SHARED flag by both the engine and function workers. Docker by itself

supports sharing IPC namespaces between containers [40], but the setup is difficult

for Docker’s cluster mode. Nightcore’s approach is functionally identical to IPC

namespaces, as Linux’s System V shared memory is internally implemented by

tmpfs [58].

Communications between functionworker threads. Individual worker threads

within function containers connect to Nightcore’s engine with a message channel

for receiving new function requests and sending responses (4⃝ and 6⃝ in Figure 3.3).

A worker thread can be either busy (executing function code) or idle. During the

execution of function code, the worker thread’s message channel is also used by

Nightcore’s runtime library for internal function calls (2⃝ and 7⃝ in Figure 3.3).

When a worker thread finishes executing function code, it sends a response message

47

with the function output to the engine and enters the idle state. An idle worker

thread is put to sleep by the operating system, but the engine can wake it by writing

a function request message to its message channel. The engine tracks the busy/idle

state of each worker so there is no queuing at worker threads, the engine only

dispatches requests to idle workers.

Mailbox. The design of Nightcore’s engine only allows individual I/O threads to

write data to message channels assigned to it (shown as violet arrows in Figure 3.5).

In certain cases, however, an I/O thread needs to communicate with a thread that

does not share a message channel. Nightcore routes these requests using per-thread

mailboxes. When an I/O thread drops a message in the mailbox of another thread,

uv_async_send (using eventfd [33] internally) is called to notify the event loop

of the owner thread.

Computing concurrency hints (τk). To properly regulate the amount of con-

current function executions, Nightcore’s engine maintains two exponential moving

averages λk (invocation rate) and tk (processing time) for each functionFnk (§ 3.2.3).

Samples of invocation rates are computed as 1/(interval between consecutive Fnk

invocations), while processing times are computed as intervals between dispatch

and completion timestamps, excluding queueing delays (the interval between re-

ceive and dispatch timestamps) from sub-invocations. Nightcore uses a coefficient

α = 10−3 for computing exponential moving averages.

48

3.3.2 Function workers

Nightcore executes user-provided function code in its function worker

processes (§ 3.2.1). As different programming languages have different abstractions

for threading and I/O, Nightcore has different function worker implementations

for them.

Nightcore’s implementation of function workers also includes a runtime

library for fast internal function calls. Nightcore’s runtime library exposes a sim-

ple API output := nc_fn_call(fn_name, input) to user-provided function

code for internal function calls. Furthermore, Nightcore’s runtime library provides

Apache Thrift [11] and gRPC [39] wrappers for its function call API, easing porting

of existing Thrift-based and gRPC-based microservices to Nightcore.

C/C++. Nightcore’s C/C++ function workers create OS threads for executing

user’s code, loaded as dynamically linked libraries. These OS threads map to

“worker threads” in Nightcore’s design (§ 3.2.1 and Figure 3.2). To simplify the

implementation, each C/C++ function worker process only runs one worker thread,

and the launcher will fork more worker processes when the engine asks for more

worker threads.

Go. In Go function workers, “worker threads” map to goroutines, the user-level

threads provided by Go’s runtime, and the launcher only forks one Go worker

process. Users’ code are compiled together with Nightcore’s Go worker implemen-

49

tation, as Go’s runtime does not support dynamic loading of arbitrary Go code 2.

Go’s runtime allows dynamically setting the maximum number of OS threads for

running goroutines (via runtime.GOMAXPROCS), and Nightcore’s implementation

sets it to ⌈worker goroutines/8⌉.

Node.js and Python. Node.js follows an event-driven design where all I/O is

asynchronous without depending on multi-threading, while Python is the same

when using the asyncio [13] library for I/O. In both cases, Nightcore implements

its message channel protocol within their event loops. As there are no parallel

threads 3 inside Node.js and Python function workers, launching a new “worker

thread” simply means creating a message channel, while the engine’s notion of

“worker threads” becomes event-based concurrency [32]. Also, nc_fn_call is an

asynchronous API in Node.js and Python workers, rather than being synchronous

in C/C++ and Go workers. For Node.js and Python functions, the launcher only

forks one worker process.

3.4 Evaluation

We conduct all of our experiments on Amazon EC2 C5 instances in the

us-east-2 region, running Ubuntu 20.04 with Linux kernel 5.4.41. We enable

hyperthreading, but disable transparent huge pages.

2Go partially supports dynamic code loading via a plugin [49], but it requires the plugin and the
loader be compiled with a same version of the Go toolchain, and all their dependency libraries have
exactly the same versions.

3Node.js supports worker threads [71] for running CPU-intensive tasks, but they have worse
performance for I/O-intensive tasks.

50

Ported RPC
Languages

services framework
SocialNetwork 11 Thrift [11] C++
MovieReviewing 12 Thrift C++
HotelReservation 11 gRPC [39] Go

HipsterShop 13 gRPC Go, Node.js,
Python

Table 3.2: Microservice workloads in evaluation (from [38, 100]).

3.4.1 Methodology

Microservice workloads. Nightcore is designed to optimize microservice work-

loads, so we evaluate it on the four most realistic, publicly available, interactive

microservice code bases: SocialNetwork, MovieReviewing, HotelReservation, and

HipsterShop. The first three are from DeathStarBench [100], while HipsterShop

is a microservice demo from Google Cloud Platform [38]. The workloads are

summarized in Table 3.2.

For the SocialNetwork workload, we tested two load patterns: (1) a pure

load of ComposePost requests (shown in Figure 3.1) (denoted as “write”); (2) a

mixed load (denoted as “mixed”), that is a combination of 30% CompostPost, 40%

ReadUserTimeline, 25% ReadHomeTimeline, and 5% FollowUser requests.

HipsterShop itself does not implement data storage, and we modify it to

use MongoDB for saving orders and Redis for shopping carts. We also add Redis

instances for caching product and ad lists. HipsterShop includes two services

written in Java and C#, which are not languages supported by Nightcore. Thus we

51

SocialNetwork Movie Hotel Hipster
write mixed Reviewing Reservation Shop
66.7% 62.3% 69.2% 79.2% 85.1%

Table 3.3: Percentage of internal function calls (§ 3.4.1).

re-implement their functionality in Go and Node.js.

For each benchmark workload, we port their stateless mid-tier services to

Nightcore, as well as OpenFaaS [47] for comparison. For other stateful services

(e.g., database, Redis, NGINX, etc.), we run them on dedicated VMs with sufficiently

large resources to ensure they are not bottlenecks. For Nightcore and OpenFaaS,

their API gateways also run on a separate VM. This configuration favors OpenFaaS

because its gateway is used for both external and internal function calls and is

therefore more heavily loaded than Nightcore’s gateway.

We use wrk2 [35] as the load generator for all workloads. In our exper-

iments, the target input load (queries per second (QPS)) is run for 180 seconds,

where the first 30 seconds are used for warming up the system, and 50th and 99th

percentile latencies of the next 150 seconds are reported. Following this method-

ology, variances of measured latencies are well within 10% before reaching the

saturation throughput.

Internal function calls. One major design decision in Nightcore is to optimize

internal function calls (§ 3.2), so we quantify the percentage of internal function

calls in our workloads in Table 3.3. The results show that internal function calls

dominate external calls, sometimes by more than a factor of 5×.

52

Cold-Start latencies. There are two components of cold-start latencies in a FaaS

system. The first arises from provisioning a function container. Our prototype of

Nightcore relies on unmodified Docker, thus does not include optimizations. How-

ever, state-of-the-art techniques such as Catalyzer [97] achieve startup latencies of

1–14ms. These techniques can be applied to Nightcore as they become mainstream.

The second component of cold-start latency is provisioning the FaaS runtime inside

the container. Our measurement shows that Nightcore’s function worker process

takes only 0.8ms to be ready for executing user-provided function code.

Systems for comparison. We compare Nightcore with two other systems: (1)

RPC servers running in Docker containers which are originally used for imple-

menting stateless microservices in the evaluation workloads; (2) OpenFaaS [47],

a popular open source FaaS system, where we use the OpenFaaS watchdog [67]

in HTTP mode to implement function handlers, and Docker for running function

containers.

We also tested the SocialNetwork application on AWS Lambda. Even when

running with a light input load and with provisioned concurrency, Lambda cannot

meet our latency targets. Executing the “mixed” load pattern shows median and

99% latencies are 26.94ms and 160.77ms, while they are 2.34ms and 6.48ms for

containerized RPC servers. These results are not surprising given the measurements

in Table 3.1.

53

(a
) S

oc
ia

lN
et

w
or

k
(w

rit
e)

(b
) S

oc
ia

lN
et

w
or

k
(m

ix
ed

)
(c

) M
ov

ie
R

ev
ie

w
in

g
Th

ro
ug

hp
ut

 (q
ue

rie
s

pe
r s

ec
on

d)
Th

ro
ug

hp
ut

 (q
ue

rie
s

pe
r s

ec
on

d)
Th

ro
ug

hp
ut

 (q
ue

rie
s

pe
r s

ec
on

d)

Th
ro

ug
hp

ut
 (q

ue
rie

s
pe

r s
ec

on
d)

(d
) H

ot
el

R
es

er
va

tio
n

Th
ro

ug
hp

ut
 (q

ue
rie

s
pe

r s
ec

on
d)

(e
) H

ip
st

er
Sh

op

Fi
gu

re
3.6

:C
om

pa
ris

on
of

N
ig
ht
co
re

w
ith

RP
C
se
rv
er
sa

nd
O
pe
nF

aa
S
us
in
g
on

e
VM

.

54

3.4.2 Benchmarks

Single worker server. We start with evaluating Nightcore with one worker

server. All systems use one c5.2xlarge EC2 VM, which has 8 vCPUs and 16GiB

of memory. For Nightcore and OpenFaaS, this VM is its single worker server, that

executes all serverless functions. On the worker VM, Nightcore’s engine uses two

I/O threads. For RPC servers, this VM runs all ported stateless microservices, such

that all inter-service RPCs are local.

Figure 3.6 demonstrates experimental results on all workloads. For all work-

loads, results show the trend that OpenFaaS’ performance is dominated by con-

tainerized RPC servers, while Nightcore is superior to those RPC servers. OpenFaaS’

performance trails the RPC servers because all inter-service RPCs flow through

OpenFaaS’s gateway and watchdogs, which adds significant latency and CPU pro-

cessing overheads. On the other hand, Nightcore’s performance is much better than

OpenFaaS, because Nightcore optimizes the gateway out of most inter-service RPCs,

and its event-driven engine handles internal function calls with microsecond-scale

overheads.

Compared to RPC servers, Nightcore achieves 1.27× to 1.59× higher

throughput and up to 34% reduction in tail latencies, showing that Nightcore

has a lower overhead for inter-service communications than RPC servers, which

we will discuss more in § 3.4.3.

We also tested Nightcore under variable load to demonstrate how its ability

to manage concurrency (§ 3.2.3) adapts to changing loads. Figure 3.7 shows the

55

Th
ro

ug
hp

ut
 (Q

P
S

)
500

1000

1500

2000

5ms

7ms

9ms

11ms

13ms

0 s 50 s 100 s 150 s 200 s 250 s 300 s 350 s

QPS 99% tail latency

C
on

cu
rr

en
cy

 h
in

t

5

10

15

20

25

0 s 50 s 100 s 150 s 200 s 250 s 300 s 350 s

0%

20%

40%

60%

80%

0 s 50 s 100 s 150 s 200 s 250 s 300 s 350 s

user time sys time

Figure 3.7: Nightcore running SocialNetwork (write) with load variations. The
upper chart shows tail latencies under changing QPS, the middle chart shows how
the concurrency hint (τk) of the post microservice changes with time, and the lower
chart is a timeline of CPU utilization.

results with a corresponding timeline of CPU utilization, indicating that Nightcore

can promptly change its concurrency level under increasing loads. When the input

load reaches its maximum (of 1800 QPS), the tail latency also reaches its maximum

(of 10.07 ms).

56

Ba
se

Q
PS

M
ed
ia
n
la
te
nc
y
(m

s)
99
%
ta
il
la
te
nc
y
(m

s)
1
se
rv
er

2
se
rv
er

4
se
rv
er

8
se
rv
er

1
se
rv
er

2
se
rv
er

4
se
rv
er

8
se
rv
er

So
ci
al
N
et
w
or
k

(m
ix
ed
)

20
00

3.4
0

2.6
4

2.3
9

2.6
4

10
.93

8.3
6

7.1
8

8.0
7

23
00

3.3
7

2.6
5

2.4
3

2.6
1

13
.95

10
.34

8.2
0

10
.63

M
ov
ie
Re

vi
ew

in
g

80
0

7.2
4

7.9
3

7.3
5

8.1
0

9.2
6

11
.42

10
.97

16
.31

85
0

7.2
4

7.5
4

7.5
7

8.5
7

9.3
1

11
.18

12
.24

25
.01

H
ot
el
Re

se
rv
at
io
n

30
00

3.4
8

3.2
9

3.0
8

4.3
2

18
.27

15
.98

14
.98

18
.09

33
00

5.5
6

4.4
3

5.5
0

4.4
3

31
.92

22
.66

22
.54

20
.83

H
ip
st
er
Sh

op
14
00

6.0
5

5.7
0

6.2
3

5.6
8

19
.68

17
.42

19
.10

15
.02

15
00

7.9
5

7.5
1

8.3
2

7.0
6

25
.39

23
.74

23
.81

20
.53

Ta
bl
e3

.4:
Ev

al
ua
tio

n
of

Ni
gh

tc
or
e’
ss

ca
la
bi
lit
y,
w
he
re

n
w
or
ke
rs

er
ve
rs

ru
n
n
tim

es
th
eb

as
eQ

PS
in
pu

t.
Fo
re

ac
h

w
or
kl
oa
d,
th
e
ba
se

Q
PS

is
se
le
ct
ed

to
be

cl
os
e
to

th
e
sa
tu
ra
tio

n
th
ro
ug

hp
ut

w
he
n
us
in
g
on

e
se
rv
er
.

So
ci
al
N
et
w
or
k
(m

ix
ed
)

M
ov
ie
Re

vi
ew

in
g

H
ot
el
Re

se
rv
at
io
n

H
ip
st
er
Sh

op
Q
PS

m
ed
ia
n

ta
il

Q
PS

m
ed
ia
n

ta
il

Q
PS

m
ed
ia
n

ta
il

Q
PS

m
ed
ia
n

ta
il

RP
C
se
rv
er
s

1.0
0x

3.2
1

23
.98

1.0
0x

14
.45

25
.57

1.0
0x

5.5
4

19
.73

1.0
0x

10
.68

48
.13

1.1
7x

11
0.0

1
>
10
00

1.2
0x

30
.80

>
10
00

1.2
2x

10
.43

43
.46

1.1
7x

15
.61

80
.89

O
pe
nF

aa
S

0.2
9x

4.5
7

81
.60

0.3
0x

10
.06

11
3.4

7
0.2

8x
5.8

0
18
.96

0.2
9x

9.2
9

32
.13

0.3
3x

6.7
2

36
8.3

8
0.4

0x
13
.32

>
10
00

0.3
3x

16
.21

10
3.8

1
0.3

8x
24
.93

86
.59

N
ig
ht
co
re

1.3
3x

2.6
4

8.0
7

1.2
8x

8.1
0

16
.31

2.6
7x

4.3
2

18
.09

1.8
7x

5.6
8

15
.02

1.5
3x

2.6
1

10
.63

1.3
6x

8.5
7

25
.01

2.9
3x

4.4
3

20
.83

2.0
0x

7.0
6

20
.53

Ta
bl
e3

.5:
Co

m
pa
ris

on
of

Ni
gh

tc
or
ew

ith
ot
he
rs

ys
te
m
su

sin
g
8
VM

s.
M
ed
ia
n
an
d
99
%
ta
il
la
te
nc
ie
sa

re
sh
ow

n
in

m
ill
ise

co
nd

s.
Fo
re

ac
h
w
or
kl
oa
d,
th
e
sa
tu
ra
tio

n
th
ro
ug

hp
ut

of
th
e
RP

C
se
rv
er
si
st
he

ba
se
lin

e
Q
PS

(1
.00

x
in

th
e

ta
bl
e)
fo
rc

om
pa
ris

on
.

57

Multiple worker servers. We also evaluate Nightcore in a distributed setting,

where multiple VMs are used as Nightcore’s worker servers. We use c5.xlarge

EC2 instances for worker VMs, which have 4 vCPUs and 8GiB of memory.

Table 3.4 evaluates Nightcore’s scalability, where up to 8 VMs are used for

worker servers and the input load is scaled with the number of VMs. The similar

(or decreasing) median and tail latencies show that Nightcore’s scalability is nearly

linear–e.g., increasing the input load 8× and providing 8 servers does not change

median and tail latencies significantly. The only exception is MovieReviewing,

where the tail latency of running on 8 server is 2.7× worse than 1 server. However,

we observe that scaling this workload with RPC servers also suffers increased tail

latencies.

Next we compare RPC servers and OpenFaaS to Nightcore with 8 worker

VMs. For RPC servers, 8 VMs run stateless services, where each VM runs one

replica of each service and load balancing is transparently supported by RPC client

libraries. For OpenFaaS and Nightcore, 8 VMs run their function handlers. Table 3.5

summarizes the experimental results, demonstrating that Nightcore achieves 1.36×

to 2.93× higher throughput and up to 69% reduction in tail latency than an RPC

server (while OpenFaaS consistently underperforms an RPC server). The advantage

of Nightcore over RPC servers is more significant in the distributed setting, because

there are inter-host RPCs in the case of replicated RPC servers, while there is no

network traffic among Nightcore’s worker VMs.

58

50
%

 la
te

nc
y

(m
s)

4

6
8

20

0 500 1000 1500 2000

RPC servers Nightcore baseline ① +Managed concurrency ②
+Fast path for internal calls ③ +Low-latency message channels ④

Queries per second (QPS)

99
%

 la
te

nc
y

(m
s)

5

50

500

0 500 1000 1500 2000

Figure 3.8: Comparison of Nightcore with RPC servers, running SocialNetwork
(write) using one VM. Designs of Nightcore are progressively added to show their
effectiveness (§ 3.4.3).

3.4.3 Analysis

Evaluating Nightcore’s design. We quantify the value of Nightcore’s design

decisions in Figure 3.8. The figure shows the performance effect of adding managed

concurrency for function executions (§ 3.2.3), a fast path for internal function

call (§ 3.2.2), and low-latency message channels as IPC primitives (§ 3.2.1). The

Nightcore baseline 1⃝ maximizes concurrent function executions (i.e., concurrency

management is disabled), all internal function calls go through the gateway, and

Nightcore’s message channels are replaced with TCP sockets. This baseline Night-

core design can achieve only one third the throughput of RPC servers while meeting

tail latency targets (1⃝). When we add managed concurrency (2⃝), Nightcore’s

performance comes close to RPC servers, as tail latencies are significantly improved.

59

Optimizing the gateway out of the processing path for internal function calls (3⃝)

brings Nightcore’s performance above the RPC servers. Finally, Nightcore’s low-

latency message channels boost performance further (4⃝), resulting in 1.33× higher

throughput than RPC servers.

Communication overheads. Microservice-based applications are known to

have a high communication-to-computation ratio [100, 122, 149]. When using

RPC servers to implement microservices and running them in containers, inter-

service RPCs pass through network sockets virtualized by the container runtime,

via overlay networks [168]. Container overlay networks allow a set of related

containers running on multiple host machines to use independent IP addresses,

without knowing if other containers reside on the same host. While this approach

works for the general case, even containers on the same host pay the processing

costs of the full network stack.

On the other hand, Nightcore keeps most inter-service calls on the same

host and uses Linux pipes for intra-host communications. Eliminating most inter-

host networking explains Nightcore’s performance advantage over containerized

RPC servers in the distributed setting. But Nightcore also has a noticeable ad-

vantage over containerized RPC servers for intra-host communications, shown in

Figure 3.6. To further understand this advantage, we collect stacktrace samples

for both Nightcore and containerized RPC servers running with a single VM, and

Table 3.6 summarizes the results. For RPC servers, TCP-related system calls and

netrx softirq consume 47.6% of non-idle CPU time, both of which are used for

60

RPC servers Nightcore
do_idle 41.6% 60.4%
user space 18.3% 14.8%
irq / softirq
– netrx 7.1% 6.8%
– others 2.0% 1.6%
syscall
– tcp socket 20.7% 7.6%
– poll / epoll 2.5% 1.1%
– futex 2.2% 0.1%
– pipe 0% 3.7%
– unix socket 1.1% 0%
– others 3.1% 3.1%
uncategorized 1.4% 0.8%

Table 3.6: Breakdowns of stacktrace samples, when running SocialNetwork (write)
at 1200 QPS on one VM. Unix sockets are used by Thrift RPC servers for inter-thread
synchronizations.

inter-service communications. In contrast, Nightcore spends much less CPU time

in TCP-related system calls, because only communication with services running

on other hosts (e.g., database and Redis) uses TCP sockets. Both systems spend

roughly the same amount of CPU time in netrx softirqs, which is caused only by

inter-host networking.

3.4.4 Discussion

A goal for Nightcore is to avoid modifying Linux, because we want Night-

core to be easier to adopt for existing microservice workloads. Nightcore therefore

relies on existing OS abstractions to achieve its performance goals, creating a chal-

lenge to efficiently use the operating systems’ existing I/O abstractions and to find

61

individual “killer microseconds.”

In our experience with Nightcore, we find there is no single dominant

“killer microsecond.” There are multiple factors with significant contributions, and

all must be addressed. Profiling the whole system for microsecond-scale opti-

mization opportunities is challenging given the overheads introduced by profiling

itself. In Nightcore, we implement low-overhead statistics collectors, and use eBPF

programs [20] for kernel-related profiling.

3.5 Microservice background

Latency-sensitive interactive microservices. Online services must scale to

high concurrency, with response times small enough (a few tens of milliseconds)

to deliver an interactive experience [78, 94, 157]. Once built with monolithic

architectures, interactive online services are undergoing a shift to microservice

architectures [1,4, 5, 53,59], where a large application is built by connecting loosely

coupled, single-purpose microservices. On the one hand, microservice architectures

provide software engineering benefits such as modularity and agility as the scale

and complexity of the application grows [45,62]. On the other hand, staged designs

for online services inherently provide better scalability and reliability, as shown

in pioneering works like SEDA [156]. However, while the interactive nature of

online services implies an end-to-end service-level objectives (SLO) of a few tens

of milliseconds, individual microservices face more strict latency SLOs – at the

sub-millisecond-scale for leaf microservices [148, 165].

Microservice architectures are more complex to operate compared to mono-

62

lithic architectures [31, 44, 45], and the complexity grows with the number of

microservices. Although microservices are designed to be loosely coupled, their

failures are usually very dependent. For example, one overloaded service in the

system can easily trigger failures of other services, eventually causing cascading

failures [3]. Overload control for microservices is difficult because microservices

call each other on data-dependent execution paths, creating dynamics that can-

not be predicted or controlled from the runtime [48, 60, 128, 166]. Microservices

are often comprised of services written in different programming languages and

frameworks, further complicating their operational problems. By leveraging fully

managed cloud services (e.g., Amazon’s DynamoDB [6], ElasticCache [7], S3 [24],

Fargate [14], and Lambda [17]), responsibilities for scalability and availability (as

well as operational complexity) are mostly shifted to cloud providers, motivating

serverless microservices [26, 42, 52, 55–57, 68, 69].

Serverless microservices. Simplifying the development and management of

online services is the largest benefit of building microservices on serverless infras-

tructure. For example, scaling the service is automatically handled by the serverless

runtime, deploying a new version of code is a push-button operation, and mon-

itoring is integrated with the platform (e.g., CloudWatch [2] on AWS). Amazon

promotes serverless microservices with the slogan “no server is easier to manage

than no server” [56]. However, current FaaS systems have high runtime overheads

(Table 3.1) that cannot always meet the strict latency requirement imposed by

interactive microservices. Nightcore fills this performance gap.

63

Nightcore focuses on mid-tier services implementing stateless business logic

in microservice-based online applications. These mid-tier microservices bridge the

user-facing frontend and the data storage, and fit naturally in the programming

model of serverless functions. Online data intensive (OLDI) microservices [148]

represent another category of microservices, where the mid-tier service fans out

requests to leaf microservices for parallel data processing. Microservices in OLDI

applications are mostly stateful and memory intensive, and therefore are not a good

fit for serverless functions. We leave serverless support of OLDI microservices as

future work.

The programming model of serverless functions expects function invoca-

tions to be short-lived, which seems to contradict the assumption of service-oriented

architectures which expect services to be long-running. However, FaaS systems

like AWS Lambda allows clients to maintain long-lived connections to their API

gateways [9], making a serverless function “service-like”. Moreover, because AWS

Lambda re-uses execution contexts for multiple function invocations [15], users’

code in serverless functions can also cache reusable resources (e.g., database con-

nections) between invocations for better performance [21].

Optimizing FaaS runtime overheads. Reducing start-up latencies, especially

cold-start latencies, is a major research focus for FaaS runtime overheads [77,91,97,

130, 132, 145]. Nightcore assumes sufficient resources have been provisioned and

relevant function containers are in warm states which can be achieved on AWS

Lambda by using provisioned concurrency (AWS Lambda strongly recommends

64

provisioned concurrency for latency-critical functions [50]). As techniques for

optimizing cold-start latencies [130, 132] become mainstream, they can be applied

to Nightcore.

Invocation latency overheads of FaaS systems are largely overlooked, as

recent studies on serverless computing focus on data intensive workloads such

as big data analysis [110, 138], video analytics [80, 99], code compilation [98], and

machine learning [92, 145], where function execution times range from hundreds

of milliseconds to a few seconds. However, a few studies [89,123] point out that the

millisecond-scale invocation overheads of current FaaS systems make them a poor

substrate for microservices with microsecond-scale latency targets. For serverless

computing to be successful in new problem domains [101,111,123], it must address

microsecond-scale overheads.

3.6 Summary

Nightcore is motivated by a realistic problem in today’s cloud computing:

making latency-sensitive microservices practical on FaaS. Frequent inter-service

calls, strict µs-scale SLOs, and complicated dynamics between microservices make

this problem particularly challenging. Nightcore overcomes these challenges by

diverse techniques: optimizing locality of inter-service calls, low runtime overheads

for common serverless events, and actively managing concurrency for resource

efficiency. Nightcore is the first FaaS runtime achieving low-latency and high

throughput, while preserving container isolation and the convenience of supporting

diverse languages.

65

Although Nightcore does not introduce many new techniques for latency

reduction, the experience of Nightcore provides takeaways that can inspire future

studies on microservices and serverless computing:

• Nightcore demonstrates the runtime overhead of FaaS can be optimized to

µs-scale by a careful implementation just in the software layer;

• In a FaaS system, locality of function calls is important to low latency (which

is required by microservices), though this creates challenges for the function

scheduler;

• Microservices can be more efficient on FaaS than traditional approaches such

as RPC servers.

Optimizing Nightcore justifies one of Lampson’s early hints [121]: “make

it fast, rather than general or powerful”, because fast building blocks can be used

more widely. As computing becomes more granular [123], we anticipate more

microsecond-scale applications will come to serverless computing. Designing

and building this next generation of services will require careful attention to

microsecond-scale overheads. Nightcore is publicly available at GitHub: https:

//github.com/ut-osa/nightcore.

66

https://github.com/ut-osa/nightcore
https://github.com/ut-osa/nightcore

Chapter 4

Boki: Stateful Serverless Computing with Shared Logs

Statemanagement remains amajor challenge in the current FaaS paradigm [104,

140,146,163]. Because of the stateless nature of serverless functions, current server-

less applications rely on cloud storage services (e.g., Amazon S3 and DynamoDB) to

manage their state. However, current cloud storage cannot simultaneously provide

low latency, low cost, and high throughput [117, 138]. Relying on cloud storage

also complicates data consistency in stateful workflows [160], because functions

in a workflow could fail in the middle which leaves inconsistent workflow state

stored in the database.

The shared log [83, 96, 154] is a popular approach for building storage

systems that can simultaneously achieve scalability, strong consistency, and fault

tolerance [25, 82, 84, 88, 102, 116, 152, 154]. A shared log offers a simple abstraction:

a totally ordered log that can be accessed and appended concurrently. While

simple, a shared log can efficiently support state machine replication [141], the

This chapter is based on the previous publication: “Boki: Stateful Serverless Computing with
Shared Logs”, by Zhipeng Jia and Emmett Witchel in the Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP 2021), pages 691—707, 2021 [108]. This chapter
also includes improvements of Boki which we have done after the SOSP publication. We have
submitted amanuscript of Boki with these new improvements to the ACMTransactions on Computer
Systems.

67

well-understood approach for building fault-tolerant stateful services [84,154]. The

shared log API also frees distributed applications from the burden of managing

the details of fault-tolerant consensus, because the consensus protocol is hidden

behind the API [82]. Providing shared logs to serverless functions can address the

dual challenges of consistency and fault tolerance (§ 4.1).

This chapter presents Boki 1, a FaaS runtime that exports the shared log

API to functions for storing shared state. Boki realizes the shared log API with a

LogBook abstraction, where each function invocation is associated with a LogBook

(§ 4.2). For a Boki application, its functions share a LogBook, allowing them to

share and coordinate updates to state. In Boki, LogBooks enable stateful serverless

applications to manage their state with durability, consistency, and fault tolerance.

The shared log API is simple to use and applicable to diverse applications [82,

84, 85, 154], so the challenge of Boki is to achieve high performance and strong

consistency while conforming to the serverless environment (§ 4.1.2). Data locality

is one challenge for serverless storage, because disaggregated storage is strongly

preferred in the serverless environment [104, 140, 146]. Boki separates the read and

write path, where read locality is optimized with a cache on function nodes and

writes are optimizedwith scale-out bandwidth. Boki will scatter writes over variable

numbers of shards while providing consistent reads and fault tolerance. In Boki,

high performance, read consistency and fault tolerance are achieved by a single

log-based mechanism, the metalog. The metalog contains metadata that totally

1Boki means bookkeeping in Japanese.

68

orders a log’s data records. Because Boki uses a compact format for the metalog,

durability and consensus are vital, but high data throughput is not. Therefore Boki

stores and updates metalogs using a simple primary-driven design.

Boki handles machine failures by reconfiguration, similar to previous shared

log systems [82, 96, 154]. Because the metalog controls Boki’s internal state transi-

tions, sealing the metalog (making it no longer writable) pauses state transitions.

Therefore, Boki implements reconfiguration by sealing the metalog, changing the

system configuration, and starting a new metalog.

Boki’s metalog allows easy adoption of state-of-the-art techniques from

previous shared log designs because it make log ordering, consistency, and fault

tolerance into independent modules (§ 4.3.1). Boki adapts ordering from Scalog [96]

and fault tolerance from Delos’s [82] sealing protocol. Another benefit of the

metalog is it decouples read consistency from data placement, enabling indices

and caches for log records to be co-located with functions. Without interfering

with read consistency, cloud providers can build simple caches which increase data

locality when scheduling functions on nodes where their data is likely to be cached.

Boki’s shared log designs are implemented on top of Nightcore (described

in Chapter 3). Nightcore has no specialized mechanism for state management, Boki

provides it; while Nightcore’s design for I/O efficiency benefits Boki. Boki achieves

append throughput of 1.2M Ops/s within a single LogBook, while maintaining

a p99 latency of 6.3ms. With LogBook engines co-located with functions, Boki

achieves a read latency of 86µs for best-case LogBook reads.

69

To ease the usage of Boki’s LogBook API for end applications, we build

support libraries on top of the LogBook API aimed at three different serverless use

cases :fault-tolerant workflows (BokiFlow), durable object storage (BokiStore), and

serverless message queues (BokiQueue). Our evaluations of Boki support libraries

show (§ 4.6):

• BokiFlow executes workflows 3.8–4.2× faster than Beldi [160];

• BokiStore achieves 1.20–1.28× higher throughput than MongoDB, while

executing transactions 2.0–2.5× faster;

• BokiQueue achieves 2.16× higher throughput and up to 17× lower latency

than Amazon SQS [8], while achieving 1.26× higher throughput and up to

1.6× lower latency than Apache Pulsar [10].

4.1 Shared log approach for stateful serverless

In the current FaaS paradigm, stateful applications struggle to achieve fault

tolerance and strong consistency of their critical state. For example, consider a

travel reservation app built with serverless functions. This app has a function

for booking hotels and another function for booking flights. When processing a

travel reservation request, both functions are invoked, but both functions can fail

during execution, leaving inconsistent state. Using current approaches for state

management such as cloud object stores or even cloud databases, it is difficult to

ensure the consistency of the reservation state given the failure model [160].

70

The success of log-based approaches for data consistency and fault tolerance

motivates the usage of shared logs for stateful FaaS. For example, Olive [142]

proposes a client library interacting with cloud storage, where a write-ahead redo

log is used to achieve exactly-once semantics in face of failures. Beldi [160] extends

Olive’s log-based techniques for transactional serverless workflows. State machine

replication (SMR) [141] is another general approach for fault tolerance, where

application state is replicated across servers by a command log. The command

log is traditionally backed by consensus algorithms [131, 133, 151]. But recent

studies demonstrate a shared log can provide efficient abstraction to support SMR-

based data structures [84, 154] and protocols [82, 85]. Boki provides shared logs

to serverless functions, so that Boki’s applications can leverage well-understood

log-based mechanisms to efficiently achieve data consistency and fault tolerance.

4.1.1 Use cases

By examining demands in serverless computing, we identify three important

cases where shared logs provide a solution. Boki provides support libraries for

these use cases (§ 4.4).

Fault-tolerant workflows. Workflows orchestrating stateful functions create

new challenges for fault tolerance and transactional state updates. Beldi [160]

addresses these challenges via logging workflow steps. Beldi builds an atomic

logging layer on top of DynamoDB. We adapt Beldi’s techniques to the LogBook

API without building an extra logging layer.

71

Durable object storage. Previous studies like Tango [84] and vCorfu [154]

demonstrate that shared logs can support high-level data structures (i.e., objects),

that are consistent, durable, and scalable. Motivated by Cloudflare’s Durable Ob-

jects [72], we build a library for stateful functions to create durable JSON objects.

Our object library is more powerful than Cloudflare’s because it supports transac-

tions across objects, using techniques from Tango [84].

Serverless message queues. One constraint in the current FaaS paradigm is

that functions cannot directly communicate with each other via traditional ap-

proaches [98], e.g., network sockets. Shared logs can naturally be used to build

message queues [96] that offer indirect communication and coordination among

functions. We build a queue library that provides shared queues among serverless

functions.

4.1.2 Technical challenges

While prior shared log designs [82, 83, 96, 154] provide inspiration, the

serverless environment creates new challenges.

Elasticity and data locality. Serverless computing strongly benefits from dis-

aggregation [79, 101], which offers elasticity. However, current serverless plat-

forms choose physical disaggregation, which reduces data locality [104, 146]. Boki

achieves both elasticity and data locality, by decoupling the read and the write

paths for log data and co-locating read components with functions.

72

Resource efficiency. Boki aims to support a high density of LogBooks efficiently,

so it multiplexes many LogBooks on a single physical log. Multiplexing LogBooks

can address performance problems that arise from a skewed distribution of LogBook

sizes. But this approach creates a challenge for LogBook reads: how to locate the

records of a LogBook. Boki proposes a log index to address this issue, with the

metalog providing the mechanism for read consistency (§ 4.3.4).

The ephemeral nature of FaaS. Shared logs are used for building high-level

data structures via state machine replication (SMR) [84, 154]. To allow fast reads,

clients keep in-memory copies of the state machines, e.g., Tango [84] has local

views for its SMR-based objects. However, serverless functions are ephemeral –

their in-memory state is not guaranteed to be preserved between invocations. This

limitation forces functions to replay the full log when accessing a SMR-based object.

Boki introduces auxiliary data (§ 4.2) to enable optimizations like local views in

Tango (§ 4.4.4). Auxiliary data are designed as cache storage on a per-log-record

basis, while their relaxed durability and consistency guarantees allow a simple and

efficient mechanism to manage their storage (§ 4.3.4).

4.2 Boki’s LogBook API

Boki provides a LogBook abstraction for serverless functions to access

shared logs. Boki maintains many independent LogBooks used by different server-

less applications. In Boki, each function invocation is associated with one LogBook,

whose book_id is specified when invoking the function. A LogBook can be shared

73

struct LogRecord {
uint64_t seqnum; string data;
vector<tag_t> tags; string auxdata;

};

// Append a new log record.
status_t logAppend(vector<tag_t> tags, string data, uint64_t* seqnum);

// Read the next/previous record whose seqnum >= ‘min_seqnum‘,
// or <= ‘max_seqnum‘.
status_t logReadNext(uint64_t min_seqnum, tag_t tag, LogRecord* record);
status_t logReadPrev(uint64_t max_seqnum, tag_t tag, LogRecord* record);

// Alias of logReadPrev(kMaxSeqNum, tag, record).
status_t logCheckTail(tag_t tag, LogRecord* record);

// Trim the LogBook until ‘trim_seqnum‘, i.e., delete all log records
// whose seqnum < ‘trim_seqnum‘.
status_t logTrim(uint64_t trim_seqnum);

// Set auxiliary data for the record of ‘seqnum‘.
status_t logSetAuxData(uint64_t seqnum, string auxdata);

Figure 4.1: Boki’s LogBook API (§ 4.2).

with multiple function invocations, so that applications can share state among their

function instances.

Like previous shared log systems [82,83,96,154], Boki exposes append, read,

and trim APIs for writing, reading, and deleting log records. Figure 4.1 lists Boki’s

LogBook API.

Read consistency. LogBook guarantees monotonic reads and read-your-writes

when reading records. These guarantees imply a function has a monotonically

increasing view of the log tail. Moreover, a child function inherits its parent

function’s view of the log tail, if two functions share the same LogBook. This

74

property is important for serverless applications that compose multiple functions

(§ 4.3.4).

Sequence numbers (seqnum). The logAppend API returns a unique seqnum

for the newly appended log record. The seqnums determine the relative order of

records within a LogBook. They are monotonically increasing but not guaranteed

to be consecutive. Boki’s logReadNext and logReadPrev APIs enable bidirectional

log traversals, by providing lower and upper bounds for seqnums (§ 4.3.2).

Log tags. Every log record has a set of tags, that is specified in logAppend. Log

tags enable selective reads, where only records with the given tag are considered

(see the tag parameter in logReadNext and logReadPrev APIs). Records with

same tags form abstract streams within a single LogBook. Having sub-streams in a

shared log for selective reads is important for reducing log replay overheads, that

is used in Tango [84] and vCorfu [154] (§ 4.3.4).

Auxiliary data. LogBook’s auxiliary data is designed as per-log-record cache

storage, which is set by the logSetAuxData API. Log reads may return auxiliary

data along with normal data if found. Auxiliary data can cache object views in a

shared-log-based object storage. These object views can significantly reduce log

replay overheads (§ 4.4.4).

As auxiliary data is designed to be used only as a cache, Boki does not

guarantee its durability, but provides best effort support. Moreover, Boki does

75

not maintain the consistency of auxiliary data, i.e., Boki trusts applications to

provide consistent auxiliary data for the same log record. Relaxing durability and

consistency allows Boki to have a simple yet efficient backend for storing auxiliary

data (§ 4.3.4).

4.3 Boki design

Boki’s design combines a FaaS system with shared log storage. Boki inter-

nally stores multiple independent, totally ordered logs. User-facing LogBooks are

multiplexed onto internal physical logs for better resource efficiency (§ 4.1.2). A

Boki physical log has an associated metalog, playing the central role in ordering,

consistency, and fault tolerance.

4.3.1 Metalog is “the answer to everything” in Boki

Every shared log system must answer three questions because they store

log records across a group of machines. The first is how to determine the global

total order of log records. The second is how to ensure read consistency as the data

are physically distributed. The third is how to tolerate machine failures. Table 4.1

shows different mechanisms used by previous shared log systems to address these

three issues, whereas in Boki, the metalog provides the single solution to all of

them.

In Boki, every physical log has a single associated metalog, to record its

internal state transitions. Boki sequencers append to the metalog, while all other

components subscribe to it. In particular, appending, reading, and sealing the

76

Ordering
log records

Read
consistency

Failure
handling

vCorfu A dedicated
sequencer Stream replicas Hole-filling

protocol

Scalog Paxos and
aggregators Sharding policy Paxos

Boki Appending
metalog entries

Tracking
metalog positions

Sealing
the metalog

Table 4.1: Comparison between vCorfu [154], Scalog [96], and Boki. Boki’s metalog
provides a unified approach for log ordering, read consistency, and fault tolerance
(§ 4.3.1).

metalog provide mechanisms for log ordering, read consistency, and fault tolerance:

• Log ordering. The primary sequencer appends metalog entries to decide

the total order for new records, using Scalog [96]’s high-throughput ordering

protocol. (§ 4.3.3)

• Read consistency. Different LogBook engines update their log indices inde-

pendently, however, read consistency is enforced by comparing metalog positions.

(§ 4.3.4)

• Fault tolerance. Boki is reconfigured by sealing metalogs, because a sealed

metalog pauses state transitions for the associated log. When all current metalogs

are sealed, a new configuration can be safely installed. (§ 4.3.5)

The metalog is backed by a primary-driven protocol. Every Boki metalog is

stored by nmeta sequencers (which is 3 in the prototype). One of the nmeta sequencers

is configured as primary, and only the primary sequencer can append the metalog.

77

Storage nodes
store records

of physical logs

Sequencer nodes
store and update

metalogs

Function engine

Function node

Runtime

Fn code

Container

……
(more function

containers)

Record
cache

Log
index

Gateway

Record store

Sequencer
(secondary)

Sequencer
(primary)

Sequencer
(secondary)

Control plane

ZooKeeper

Controller

Function
requests

Replicate
log record ①

Report
progress ②

Append
metalog ③

Propagate metalog ④

Invoking functions

LogBook API calls
①②③④ Appending logs

Record store

Record store

LogBook engine

Figure 4.2: Architecture of Boki (§ 4.3.2), where red arrows show the workflow of
log appends (§ 4.3.3).

To append a new metalog entry, the primary sequencer sends the entry to all

secondary sequencers for replication. Once acknowledged by a quorum, the new

metalog entry is successfully appended. The primary sequencer always waits for

the previous entry to be acknowledged by a quorum before issuing the next one.

Sequencers propagate appended metalog entries to other Boki components that

subscribe to the metalog.

4.3.2 Architecture

Figure 4.2 depicts Boki’s architecture, which is based on Nightcore (Chap-

ter 3), a state-of-the-art FaaS system for microservices. In Nightcore’s design, there

is a gateway for receiving function requests and multiple function nodes for run-

ning serverless functions. On each function node, an engine process communicates

with the Nightcore runtime within function containers via low-latency message

channels.

Boki extends Nightcore’s architecture by adding components for storing,

ordering, and reading logs. Boki also has a control plane for storing configuration

78

metadata and handling component failures.

Storage nodes. Boki stores log records on dedicated storage nodes. Boki’s

physical logs are sharded, and each log shard is stored on ndata storage nodes

(ndata equals 3 in the prototype). Individual storage nodes contain different shards

from the same log, and/or shards from different logs, depending on how Boki is

configured.

Sequencer nodes. Sequencer nodes run Boki sequencers that store and update

metalogs using a primary-driven protocol (see § 4.3.1). Sequencers append new

metalog entries to order physical log records as detailed in § 4.3.3. Similar to storage

nodes, individual sequencer nodes can be configured to back different metalogs.

LogBook engines. In Nightcore, the engine processes running on function nodes

are responsible for dispatching function requests. Boki extends Nightcore’s engine

by adding a new component serving LogBook calls. We refer the new part as

LogBook engine, to distinguish it from the part serving function requests.

LogBook API requests are forwarded to LogBook engines by Boki’s runtime,

which is linked with user supplied function code. LogBook engines maintain indices

for physical logs, in order to efficiently serve LogBook reads (detailed in § 4.3.4).

LogBook engines subscribe to the metalog, and incrementally update their indices

in accordance with the metalog. LogBook engines also cache log records for faster

reads, using their unique sequence numbers as keys. Co-locating LogBook engines

79

with functions means that, in the best case, LogBook reads can be served without

leaving the function node.

Control plane. Boki’s control plane uses ZooKeeper [105] for storing its config-

uration. Boki’s configuration includes (1) the set of storage, sequencers, and indices

constituting each physical log; (2) addresses of gateway, function, storage, and

sequencer nodes; (3) parameters of consistent hashing [114] used for the mapping

between LogBooks and physical logs. Every Boki node maintains a ZooKeeper

session to keep synchronized with the current configuration. ZooKeeper sessions

are also used to detect failures of Boki nodes.

Boki’s controller (see the control plane in Figure 4.2) is responsible for

global reconfiguration. Reconfiguration happens when node failures are detected,

or when instructed by the administrator to scale the system, e.g., by changing the

number of physical logs (see § 4.6.1 for reconfiguration latency measurements). We

define the duration between consecutive reconfigurations as a term. Terms have a

monotonically increasing term_id.

Structure of sequence numbers (seqnum). In Boki, every log record has a

unique seqnum. The seqnum, from higher to lower bits, is (term_id, log_id, pos),

where log_id identifies the physical log and pos is the record’s position in the

physical log. Seqnums in this structure determine a total order within a LogBook,

which is in accordance with the chronological order of terms and the total order of

the underlying physical log. But note that this structure cannot guarantee seqnums

80

0a 1a 0b 0c 2a 1c 2c 3a 4a 1b 2b 3c 3b

(2, 1, 1) (3, 1, 3) (5, 3, 4) (5, 4, 6)

4c

metalog

total order

0a 1a 2a 3a 4a 0c 1c 2c 3c 4c0b 1b 2b 3b

shard a shard b shard c

5c

5c

Figure 4.3: An example showing how the metalog determines the total order of
records across shards. Each metalog entry is a vector, whose elements correspond
to shards. In the figure, log records between two red lines form a delta set, which
is defined by two consecutive vectors in the metalog (§ 4.3.3).

within a LogBook to be consecutive, whose records can be physically interspersed

with other LogBooks.

4.3.3 Workflow of log appends

When appending a LogBook (shown by the red arrows in Figure 4.2), the

new record is appended to the associated physical log. For simplicity, in this section,

the term log always refers to physical logs.

Records in a Boki log are sharded, and each shard is replicated on ndata

storage nodes. Within a Boki log, each function node controls a shard. For a

function node, its LogBook engine maintains a counter for numbering records from

its own shard. On receiving a logAppend call, the LogBook engine assigns the

counter’s current value as the local_id of the new record.

The LogBook engine replicates a new record to all storage nodes backing its

shard (1⃝ in Figure 4.2). Storage nodes then need to update the sequencers with the

information of what records they have stored. The monotonic nature of local_id

81

enables a compact progress vector, v. Suppose the log has M shards. We use a

vector v of lengthM to represent a set of log records. The set consists of, for all

shards j, records with local_id < vj . If shard j is not assigned to this node, we set

the j-th element of its progress vector as∞. Every storage node maintains their

progress vectors, and periodically communicates them to the primary sequencer

(2⃝ in Figure 4.2).

By taking the element-wise minimum of progress vectors from all storage

nodes, the primary sequencer computes the global progress vector. Based on the

definition of progress vectors, we can see the global progress vector represents the

set of log records that are fully replicated. Finally, the primary sequencer period-

ically appends the latest global progress vector to the metalog (3⃝ in Figure 4.2),

which effectively orders log records across shards.

We now explain how the total order is determined by the metalog. Consider

a newly appended global progress vector, denoted by vi. By comparing it with the

previous vector in the metalog (denoted by vi−1), we can define the delta set of

log records between these two vectors: for all shards j, records satisfying vji−1 ≤

local_id < vji . This delta set exactly covers log records that are added to the total

order by the new metalog entry vi. Records within a delta set are ordered by (shard,

local_id). Figure 4.3 shows an example of metalog and its corresponding total order.

In this figure, between two consecutive red lines is a delta set.

The LogBook engine initiating the append operation learns about its com-

pletion by its subscription to the metalog (4⃝ in Figure 4.2). The metalog allows the

LogBook engine to compute the final position of the new record in the log, used to

82

logReadNext(book_id = 3, min_seqnum = 8, tag = 2)

Log index ②

(book_id, tag) seqnums

…… [……]

(3, 2) [3, 6, 7, 9, 10, …]

LogBook engine

Record
cache

Storage nodes

Record store

①

③

④

Record store

Record store

Figure 4.4: Workflow of LogBook reads (§ 4.3.4): 1⃝ Locate a LogBook engine
stores the index for the physical log backing book_id = 3; 2⃝ Query the index row
(book_id, tag) = (3, 2) to find the metadata of the result record (seqnum = 9 in
this case); 3⃝ Check if the record is cached; 4⃝ If not cached, read it from storage
nodes.

construct the sequence number returned by logAppend.

4.3.4 From physical logs to LogBooks

Building indices for LogBooks. Boki virtualizes LogBooks by multiplexing

them on physical logs, which creates a problem for efficient reads – avoiding

consulting every log shard. Previous systems [154] have used fixed sharding, where

a LogBook maps to some fixed shard, so that a single storage node has all of its

records. But then a single storage node becomes the bottleneck for a LogBook’s

write throughput. For performance and operational advantages, Boki does not

place records from a LogBook using a fixed policy. Boki will store LogBook records

in any shard and it builds a log index for locating records when reading LogBooks.

Boki’s log index is compact, only including necessary metadata of log

records, so that a single machine can store the entire index. Log indices are stored

and maintained by LogBook engines, leading to locality benefits because LogBook

83

metalog
positions

A

Fn g

X the log

indices make progress
independentlyB C

Y

0 1 2 3 4

0 reads viaX B Fn f
3

Consistency checks

Breads

Fn h 3 Areads

Fn f 1

Updating metalog positions

Fn f 3 appends Y Fn f
4

log indices

Figure 4.5: Consistency checks by comparing metalog positions (§ 4.3.4). For a
function, if reading from a log index whose progress is behind its metalog position,
it could see stale states. For example, function h has already seen recordX , so that
it cannot perform future log reads through index A.

engines reside on function nodes. Every physical log has multiple copies of the log

index maintained by different LogBook engines, for higher read throughput and

better read locality.

The structure of the log index is designed to fit the semantic of LogBook read

APIs. First, the log index groups records by their book_id, because a read can only

target a single LogBook. The API semantics for logReadNext and logReadPrev

(see Figure 4.1) allow selective reads by log tags (tags are specified by users in

logAppend). Both APIs seek for records sequentially by providing bounds for

seqnums, e.g., logReadNext finds the first record whose seqnum ≥ min_seqnum.

Putting them together, Boki’s log index groups records by (book_id,tag). For each

(book_id,tag), it builds an index row as an array of records, sorted by their seqnums.

Figure 4.4 depicts the workflow of LogBook reads using the index.

84

Read consistency. The consistency of Boki’s log reads are determined by the log

index. The log index is used to find the seqnum of the result record. The seqnum

uniquely identifies a log record, while both data and metadata (i.e., tags) of a log

record are immutable after they are appended.

The challenge of enforcing read consistency comes from multiple copies of

the log index, which are maintained by different LogBook engines. Keeping these

copies consistent makes the system vulnerable to “slowdown cascades” [76, 129],

i.e., the slowdown of a single node can prevent the whole system from making

progress.

Boki uses observable consistency [93, 129], where consistency checks are

delayed to the time of data reads. The metalog position defines the version of the

log index a function reads. A log index whose version is determined by metalog

position l means the log index includes all records ordered by the l-prefix of the

metalog.

When a user function reads a LogBook at an index with metalog position

l, it can never read an index at < l, because that would violate monotonic reads.

Similarly, if a function appends a log record that is ordered by the l-th metalog

entry, subsequent reads from the same function cannot be served by an index

whose position < l or read-your-writes could be violated.

Therefore, Boki maintains a metalog position for each function and that

position provides consistent LogBook reads. LogBook engines subscribe to the

metalog to periodically update their indices. Consistency checks are performed by

85

comparing a function’s metalog position with the index version. Figure 4.5 depicts

the mechanism. If a consistency check fails, the read is suspended by the engine

until its index has caught up. Successful reads and appends from a function update

the function’s metalog position, ensuring the consistency of future reads. A child

function inherits the metalog position from its parent function, so that consistency

guarantees hold across function boundaries.

Trim operations. Because the log index plays an important role in read consis-

tency, trimming records in log indices effectively makes trim operations observable.

Storage space for trimmed records can be reclaimed independently in the back-

ground by storage nodes. Therefore, Boki implements logTrim API calls by simply

appending a trim command to the metalog. For a trim command in the metalog, the

LogBook engines executes it by trimming related index rows in their log indices,

while storage nodes gradually reclaim space for trimmed records.

Auxiliary data. Described in the LogBook API (§ 4.2), the auxiliary data of log

records have relaxed requirements of durability and consistency. This allows a

very simple store of auxiliary data that reuses the record cache within LogBook

engines. The relaxed consistency of auxiliary data does not even require Boki to

exchange them between nodes. Therefore, for logSetAuxData calls, Boki simply

caches the provided auxiliary data on the same function node. To serve reads from

the user function Boki checks if there is auxiliary data in the local cache. If found,

it is returned along with the result record.

86

4.3.5 Reconfiguration protocol

Boki’s controller can initiate a reconfiguration if node failures (including

failures of primary sequencers) are detected or when instructed by a system ad-

ministrator.

The main part of Boki’s reconfiguration protocol is to seal all current meta-

logs. A sealed metalog cannot have any more entries appended, so the correspond-

ing physical log is sealed as well. Boki employs Delos [82]’s log sealing protocol,

that is surprisingly simple but fault-tolerant. To seal a metalog, the controller sends

the seal command to all relevant sequencers. On receiving the seal command, the

primary sequencer stops issuing new metalog entries, while secondary sequencers

commit to reject future metalog entries from the primary sequencer. The sealing is

completed when a quorum of sequencers have acknowledged the seal command

(see the Delos paper [82] for details).

After all metalogs are successfully sealed, Boki can install a new configura-

tion to start the next term. In the new term, all physical logs start with new, empty

metalogs. To ensure read consistency across terms, we include the term_id in the

consistency check, which is compared before metalog positions. If the number of

physical logs changes, the consistent hashing parameters are updated accordingly.

To tolerate failures of the controller, Boki runs a group of controller pro-

cesses. The reconfiguration protocol is executed by a leader, elected via ZooKeeper.

87

4.4 Boki support libraries

In this section, we present Boki support libraries, designed for three different

stateful FaaS paradigms that benefit from the LogBookAPI: fault-tolerant workflows

(§ 4.4.1), durable object storage (§ 4.4.2), and queues for message passing (§ 4.4.3)

4.4.1 BokiFlow: fault-tolerant workflows

We build a support library called BokiFlow for fault-tolerant workflows.

BokiFlow adapts Beldi [160]’s techniques to ensure exactly-once semantics and

support transactions for serverless workflows.

In a Beldi workflow, every operation that has externally visible effects (e.g.,

a database write) is logged with monotonically increasing step numbers. When a

workflow fails, Beldi re-executes it using the workflow log. To ensure the exactly-

once semantic, Beldi recovers the internal state of the failed workflow step-by-step,

while skipping operations with externally visible effects. Beldi builds a logging

abstraction on top of DynamoDB, a cloud database from AWS. Beldi applications

store user data in the same DynamoDB database with workflow logs.

BokiFlow implements Beldi’s techniques by using LogBooks as the logging

layer, i.e., logging every workflow step in a LogBook. Similar to Beldi, BokiFlow

applications store user data in DynamoDB, so that BokiFlow provides the same

user-facing APIs as Beldi.

88

1 def write (table , key , val) :
2 # Append write-ahead log for this DB update
3 tag = hashLogTag ([ID , STEP])
4 logAppend (tags : [tag] , data : [table , key , val])

5 # Always consider the first log record for this step,
6 # so that during workflow re-execution the original log
7 # record is used
8 record = logReadNext (tag : tag , minSeqnum : 0)

9 # The write-ahead log also determines a total order for
10 # DB writes, where sequence numbers of log records are
11 # used as "version numbers"
12 rawDBWrite (table , key ,
13 cond : "Version < {record.seqnum}" ,
14 update : "Value = {val}; Version = {record.seqnum}")
15 STEP = STEP + 1

16 def invoke (callee , input) :
17 # Generate UUID for child function and store it
18 # in pre-invoke log record
19 tagPre = hashLogTag ([ID , STEP , "pre"])
20 logAppend (tags : [tagPre] , data : { "calleeId" : UUID () })

21 # Read calleeId from log record for child function,
22 # so that we use original UUID during re-execution
23 record = logReadNext (tag : tagPre , minSeqnum : 0)
24 calleeId = record . data ["calleeId"]

25 # Invoke child function with the given input
26 retVal = rawInvoke (callee , [calleeId , input])

27 # Post-invoke record stores return value of child function
28 tagPost = hashLogTag ([ID , STEP , "post"])
29 logAppend (tags : [tagPost] , data : { "retVal" : retVal })

30 record = logReadNext (tag : tagPost , minSeqnum : 0)
31 STEP = STEP + 1
32 return record . data ["retVal"]

Figure 4.6: Pseudocode demonstrating BokiFlow’s write and invoke functions
(§ 4.4.1.3). hashLogTag computes a hashing-based log tag for the provided tuple.
Variable ID stores the unique ID of the current workflow. Variable STEP stores the
step number, which is increased by 1 for every operations within the workflow.

89

4.4.1.1 Distinctions between BokiFlow and Beldi.

Because the LogBook API is very different from a cloud database API,

BokiFlow needs new techniques to address issues caused by these differences.

There are three ways BokiFlow distinguishes itself from Beldi.

Atomic “test-and-append”. Beldi requires an atomic operation to check if

the current step is previously logged and it logs the step only if the check fails.

Beldi relies on conditional updates provided by a cloud database for this operation.

Unfortunately, the LogBook API does not support conditional log appends. Shown

in Figure 4.6, BokiFlow uses a different mechanism based on log tags provided by

LogBooks. The pseudocode shows how BokiFlow uses log tags to distinguish the

log records of workflow steps. BokiFlow always reads log records immediately

after appends, and only honors the first record of a step. This allows BokiFlow

to recognize completed steps during workflow re-execution, by checking if the

appended record is the first one.

Idempotent database update. For a workflow step that updates the database,

Beldi requires the database update and logging of this step to be a single atomic

operation. Because Beldi stores its logs along with user data in the same database, it

can use the atomic scope provided by the database (e.g., a row inDynamoDB) for this

requirement. However, BokiFlow’s LogBook is not in the same atomic scope as user

data, so no mechanism exists to update both in a single atomic operation. Instead,

BokiFlow makes data updates idempotent. Pseudocode in Figure 4.6 demonstrates

90

the approach, where the rawDBWrite statement uses the sequence number of the

step log as the “version” of the database update. During workflow re-execution,

re-executing this database update will fail the update condition.

Locks. Beldi provides locks for mutual exclusion; locks also serve as building

blocks for Beldi’s transactions (§ 4.4.1.2). Implementing locks requires an atomic

“test-and-set” operation, where Beldi uses conditional updates provided by the

database. BokiFlow implements locks as registers backed by replicated state ma-

chines using the LogBook API. For a BokiFlow lock, its register stores the lock

holder (unique identifiers such as UUID), or a special EMPTY value. The most natural

way to “test” a lock is to execute a predicate on the current state machine. The most

natural “set” is to append an update. When we try to combine these operations

into a “test-and-set”, the LogBook API cannot linearize the result because other

BokiFlow clients may also append updates to the same state machine. BokiFlow’s

solution is to include the log position of the current state machine in the log record

of the proposed update. On log replay, only choose the first of any updates that

were concurrently proposed. In this way, the total order provided by the LogBook

API becomes a mechanism for linearizability.

Pseudocode in Figure 4.7a demonstrates BokiFlow locks. The lock uses the

prev field to store the log position, as shown in Figure 4.7. The “prev” pointers form

a linearizable chain of state machine updates. This technique provides a general

approach for building linearizable replicated state machines with the LogBook API.

91

1 def checkLockState (key) :
2 tail = None # Tail of the "linearizable chain"
3 nextSeqnum = 0
4 while True :
5 record = logReadNext (tag : key , minSeqnum : nextSeqnum)
6 if record == None :
7 break # No more log record for this lock
8 if tail == None or record . data ["prev"] == tail . seqnum :
9 # This record is part of the linearizable chain
10 tail = record
11 nextSeqnum = record . seqnum + 1
12 return tail

13 def tryLock (key , holderId) :
14 record = checkLockState (key)
15 if record . data ["holder"] == EMPTY :
16 # Presume the lock is not held, and append log
17 # record to acquire
18 logAppend (tags : [key] , data : { "holder" : holderId ,
19 "prev" : record . seqnum })
20 record = checkLockState (key)
21 if record . data ["holder"] == holderId : # Lock succeeded
22 # The acquire record will be used for unlock later
23 return record
24 return None # Lock failed

25 def unlock (key , acquireRecord) :
26 logAppend (tags : [key] , data : { "holder" : EMPTY ,
27 "prev" : acquireRecord . seqnum })

(a) Pseudocode of BokiFlow’s lock operations.

0

holder

0 1 0 3 3

0 1 2 3 4 5

5

a b E c d eE E

prev

6 7

the linearizable chain

seqnum

7

f

7

g

8

E

7

h

8 9 10 11

(b) An example log behind a BokiFlow lock. Holders {a, d, f} acquire the lock. prev
pointers in the log form an implicit linearizable chain, which alternates successful acquire
and release attempts. Holders share the same prev pointers, e.g., holders {a, b, c}, mean
they try to acquire the lock concurrently. Also note holder c’s tryLock record is after holder
a’s lock release record, which is a valid outcome from interleaving.

Figure 4.7: Locks in BokiFlow (§ 4.4.1).

92

4.4.1.2 Transactions in BokiFlow

Same as Beldi, BokiFlow supports transactions that can span across func-

tion boundaries with a workflow. Transactions provide stronger guarantees than

the workflow’s exactly-once semantic: 1. transactions guarantee isolation so that

they will not observe data writes from other concurrently running workflows;

2. transactions can be aborted and data writes made within an aborted transaction

will never be observed by another workflow.

When initiating a transaction, BokiFlow assigns a unique txn_id for it and

creates a log for recording operations made within this transaction. Records of

transaction logs are appended to the same LogBook used by workflow logs, but

use txn_id as log tags. These transaction identifiers are passed between functions

if the transaction spans across function boundaries.

On committing a transaction, BokiFlow follows the transaction log to com-

mit data writes to DynamoDB. Similar to Beldi, BokiFlow uses locks to guarantee

consistency and isolation. BokiFlow maintains per-key locks for tables in Dy-

namoDB. Within a transaction, locks are acquired for database read and write

operations. To prevent deadlock, acquiring a lock is a non-blocking operation.

4.4.1.3 Walk-through of BokiFlow operations

BokiFlow inherits Beldi’s log-based techniques for exactly-once execution

semantics [142, 160]. In § 4.4.1.1, we discussed the distinctions between Beldi and

BokiFlow. To make it easier to understand BokiFlow’s techniques without prior

knowledge of Beldi, we will walk through BokiFlow’s write and invoke operations

93

in detail, based on pseudocode in Figure 4.6.

We first explain the write operation. write(table, key, val) updates a key-

value pair in a DynamoDB table. Same as in Beldi, database writes are logged

before execution for fault tolerance. Line 4 in Figure 4.6 shows the write-ahead

logging, where the log record is tagged by the workflow ID and the current step

number. The log tag allows BokiFlow to uniquely distinguish this write opera-

tion. When failure happens and the workflow is re-executed, logAppend (line 4)

will be executed again, appending a new and different log record. But the next

logReadNext (line 8) will read the original record because it looks for the smallest

sequence number. This append-then-read approach can even guarantee consistency

under an extreme condition where concurrent instances of the same workflow

are executing, caused by, e.g., unreliable detections of workflow failures. Finally,

rawDBWrite (line 12) performs the real DynamoDB writes. We previously explain

BokiFlow uses sequence numbers to version writes for the effect of idempotent

updates. Because sequence numbers are critical for achieving idempotence, it is

important that during workflow re-execution, the same log record must be used

for each write operation.

We then look at the invoke operation that calls child functions in a workflow.

Unlike the write operation, the invoke operation needs two log records: one before

invoking the child function, and the other after invoking. Same as Beldi, BokiFlow

generates a unique ID for each function within a workflow, and function IDs must

be preserved during workflow re-executions to ensure deterministic recovery. The

pre-invoke log record (line 20 in Figure 4.6) stores the unique ID for the child

94

function, so that the previous function ID can be retrieved during workflow re-

execution (line 24). The post-invoke log record (line 29) stores the return value of

the child function call. Pseudocode in Figure 4.6 shows that invoke always calls into

the child function even during workflow re-execution, which can be redundant.

Our implementation will optimize this redundancy by checking the post-invoke

log record before calling into the child function. If the post-invoke log record exists,

we can immediately return with the retVal in the log record.

4.4.2 BokiStore: durable object storage

The second support library we built is BokiStore, providing durable object

storage for stateful functions. BokiStore employs Tango’s [84] techniques for build-

ing replicated data structures over a shared log. BokiStore’s objects are represented

as JSON objects. Objects are identified by unique string names. Figure 4.8 shows

the BokiStore APIs for reading and modifying fields of JSON objects. BokiStore

stores all object updates within a LogBook. Reading object fields requires replaying

the log to re-construct the object’s state. Log records containing object updates are

tagged with object names, so that objects can be re-constructed by only reading

relevant records.

Transactions. BokiStore supports transactions for reading and modifying multi-

ple objects. BokiStore’s log-based transaction protocol largely follows Tango. To

start a transaction, BokiStore first appends a txn_start record with its txn_id. For

all subsequent object reads within the transaction, BokiStore only replays the log

95

Get the object with name "x"
x = getObject ("x")
Suppose object x is
{"a":{}, "b":"foo"}
print (x . Get ("b")) # => "foo"
x . Set ("a.c" , "bar")
x => {"a":{"c":"bar"},"b":"foo"}
x . MakeArray ("a.d") ; x . PushArray ("a.d" , 1)
x => {"a":{"c":"bar", "d":[1]}, "b":"foo"}

txn = createTransaction (readonly : False)
alice = txn . GetObject ("alice")
bob = txn . GetObject ("bob")
if alice . Get ("balance") >= 1 0 :

alice . Inc ("balance" , - 1 0)
bob . Inc ("balance" , 1 0)

txn . Commit ()

Figure 4.8: Demonstration of BokiStore API (§ 4.4.2).

up to the position of its txn_start record. This essentially takes a snapshot of the

entire object storage at the txn_start position, which achieves snapshot isolation.

When committing the transaction, BokiStore appends a txn_commit record,

including its txn_id and all object writesmadewithin the transaction. The txn_commit

record is speculative – by itself, it does not indicate the success of this transaction.

The commit outcome of a transaction is determined by replaying the log up to its

txn_commit record. A transaction succeeds in committing if and only if there is no

conflicting write made between its txn_start and txn_commit records (i.e., within

the conflict window). Figure 4.9 depicts a transaction log. In this example, TxnB

is a failed transaction and it is ignored when determining the commit outcome of

TxnC.

Transactions in BokiStore can be marked as read-only when creation (see

96

TxnA
start

TxnA
commit

TxnB
start

TxnB
commit

TxnC
start

TxnC
commit

{X, Y} {Y, Z} {X, Z}

normal
write
{Z}

log

Figure 4.9: Transactions in BokiStore (§ 4.4.2). TxnB fails due to conflict with TxnA.
For TxnC, despite its write set overlaps with TxnB’s, TxnC still succeeds due to the
failure of TxnB.

Figure 4.8). This feature makes read-only transactions simpler to implement: they

do not need to append actual txn_start and txn_commit records, because there is

no need for conflict detection. To achieve isolation, when starting the transaction,

BokiStore simply caches the current tail position of the log, instead of appending

a real txn_start record. For object reads within the transaction, BokiStore only

replays log records until the cached position.

4.4.3 BokiQueue: message queues

Queues are the most common data structure for message passing. The

final support library we build is BokiQueue which provides serverless queues.

BokiQueue provides a push and pop API for sending and receiving messages. Like

BokiStore, BokiQueue uses the log to store all writes, i.e., push and pop operations.

The outcome of a pop is determined by replaying the log. To improve the scalability

of BokiQueue, we use vCorfu [154]’s composable state machine replication (CSMR)

technique, that divides a single queue into multiple SMR-backed queue shards. Each

queue shard is consumed by a single consumer, which reduces contention. A queue

producer can choose an arbitrary queue shard to push. In our implementation, we

simply use round-robin.

97

4.4.4 Optimizing log replay with auxiliary data

Reads in BokiStore are served by replaying the log to re-construct object

state. This naive approach makes read latency proportional to the number of

relevant log records, i.e., the number of object writes. Tango optimizes log replay

by caching local object views, such that only new records from the shared log

are replayed. However, in the FaaS setting, in-memory state is not guaranteed to

be preserved between invocations, so a simple memory cache for objects is not a

viable solution.

Boki’s auxiliary data (§ 4.2) is motivated by the need to provide per-log-

record cache storage. In BokiStore, for every object write that generates a log record,

the auxiliary data of the record stores a snapshot view of the object. When reading

an object, BokiStore seeks from the log tail to find the first relevant record having

a cached object view in its auxiliary data. Then BokiStore replays the log from this

position to re-construct the target object state. During replay, for records missing

cached object views, their auxiliary data are filled with object views. Figure 4.10

demonstrates this accelerated replay process.

One important special case for accelerating log replay is commit records.

For txn_commit records, their auxiliary data stores the decided commit outcome

and if the commit succeeds, the auxiliary data also caches a view of modified

objects.

In BokiFlow’s log-based locks (shown in Figure 4.7a), auxiliary data of a

record is used for caching the current tail of the linearizable chain. This allows the

98

log

auxiliary data

① Read backward until cached view exists

 ② Replay the log, and fill missing cached views

Figure 4.10: Use auxiliary data to cache object views in BokiStore, which can avoid
a full log replay (§ 4.4.4).

checkLockState function to optimize its log replay as illustrated in Figure 4.10.

4.4.5 Garbage collector functions

The FaaS paradigm simplifies garbage collection (GC) in shared-log-based

storage systems. Boki support libraries use garbage collector functions to trim

useless log records, in order to prevent unlimited growth of LogBooks. These

functions are periodically invoked and they reclaim space via LogBook’s logTrim

API (Figure 4.1). The logTrim API trims a prefix of the log: it takes a single

parameter trim_seqnum and deletes all log records with sequence numbers less

than trim_seqnum. Given the API semantic, garbage collector functions have to

efficiently figure out the safe trim position. We then describe specific mechanisms

used by different Boki support libraries.

BokiFlow. BokiFlow follows Beldi’s GC strategy [160]: the garbage collector

function scans for completed workflowswhose completion timestamp is old enough,

and marks these workflows as recyclable. When a prefix of the log only contains

records from recyclable workflows, logTrim can be called to reclaim space.

99

BokiStore. In BokiStore, the log stores a history of writes for individual objects.

The garbage collector function periodically materializes object states in the log, so

that log records corresponding to the old history can be safely deleted.

To scale this strategy with more objects, BokiStore uses multiple GC func-

tions for materializing object states in parallel. Each GC function is responsible for

a shard of objects, and the shard numbers are determined by hashing object names.

One of the GC functions is designated as master, who is responsible for

actually calling logTrim. Other GC functions periodically store safe trim positions

for their shards in the log (with some special tag), so that the master can determine

the global trim position. The master GC function also takes extra care to ensure

the trim position is not within any ongoing transactions.

BokiQueue. In BokiQueue, each queue shard is consumed in FIFO order, where

log records of popped elements become useless. For each queue shard, its consumer

can determine the safe trim position, and periodically stores the position in the

log with some special tag. A dedicated GC function reads trim positions from all

shards, and calls logTrim accordingly.

4.5 Implementation

The Boki prototype is based on Nightcore [66], where we add 13,133 lines

of code, mostly in C++. Boki’s support libraries are implemented in Go, consisting

of 3,569 lines of code. One of the support libraries, BokiFlow, derives from the Beldi

codebase [30]. The LogBook API makes Beldi’s techniques easier to implement,

100

so that BokiFlow shrinks the Beldi library from 1,823 lines to 1,137 lines, or a 38%

reduction.

Boki uses 64-bit integers as the tag type for LogBook records. In Boki

support libraries, when we need other types (e.g., strings) as the log tag, we use

their hash values instead and store the original string in the record data. Boki

employs Dynamo [95]’s variant of consistent hashing (strategy 3 in their paper) to

uniformly map between LogBooks and physical logs.

4.5.1 Storage backend

Boki provides two different options as its storage backend for log records.

The first option is to use a third-party key-value store library. LogBook

records are stored with their unique sequence numbers (seqnum) as keys, and log

data and other metadata are serialized as values. Current implementation supports

RocksDB [54] and Tkrzw [63]’s TreeDBM. RocksDB is a key-value store based on

log-structured merge-tree (LSM), and Tkrzw is B-tree-based.

The second options is that Boki implements an on-disk journal for storing

log records. We refer to this storage option as JournalStore in our evaluation

(§ 4.6.1). Boki’s journal is implemented by append-only files. Every I/O thread

has its own journal file. Boki uses a size limit for individual journal files, and I/O

threads will create new journal files when current ones reach the size limit. To

allow reading log records by their seqnums, Boki maintains a separate hash table

to locate log records within journal files. To facilitate log trims, for each journal

file, Boki maintains a bitmap indicating trimmed log records. Boki gradually reads

101

trim commands stored in the metalog, and masks bitmaps of relevant journal files.

Boki removes a journal file when its bitmap is fully masked.

When using Boki’s own on-disk journal as log storage, new log records are

flushed to journal files before storage nodes report progress to sequencers (2⃝ in

Figure 4.2). In contrast, when using third-party key-value store libraries as storage

backend, log records will be flushed to the key-value store after the metalog is

propagated (4⃝ in Figure 4.2). Therefore, using Boki’s on-disk journal achieves

a stronger durability guarantee than using key-value store libraries. Boki also

provides the option to use an on-disk journal along with key-value store, which can

combine the benefits of stronger durability with the flexibility of using third-party

key-value store libraries. We compare these different options in § 4.6.1 (also see

Table 4.3).

In our previous presentation of Boki [108], only the first option (using

key-value store library) is described and evaluated. Boki’s on-disk journal is a new

storage option added in this work.

4.6 Evaluation

In this section, we first evaluate Boki with microbenchmarks to explore its

performance characteristics (§ 4.6.1). We then evaluate Boki’s support libraries

using realistic workloads (§ 4.6.2, § 4.6.3, and § 4.6.4). Finally, we analyze how

Boki’s techniques benefit its use cases (§ 4.6.5).

102

Experimental setup. We conduct all our experiments on Amazon EC2 in-

stances in the us-east-2 region. Boki’s function, storage, and sequencer nodes use

c5d.2xlarge instances, each of which has 8 vCPUs, 16GiB of DRAM, and 1×200GiB

NVMe SSD. Boki’s gateway and control plane use c5d.4xlarge instances. Exper-

imental VMs run Ubuntu 20.04 with Linux kernel 5.10.17, with hyper-threading

enabled. We measure that the round trip time between VMs is 107µs ±15µs, and

the network bandwidth is 9,681 Mbps.

Unless otherwise noted, the following Boki settings are fixed in our ex-

periments: (1) the ZooKeeper cluster in the control plane has 3 nodes; (2) the

replication factors of both physical logs (ndata) and metalogs (nmeta) equal 3; (3) one

single physical log configured for all LogBooks; (4) for each physical log, there are

4 LogBook engines that store its index (though functions can read their LogBooks

via remote engines); (5) the record cache per LogBook engine is 1GB (for both

record data and auxiliary data § 4.2).

4.6.1 Microbenchmarks

We start the evaluation of Boki using microbenchmarks, where we answer

the following questions.

• What is the append throughput of a single LogBook? We use an append-

only workload to measure the throughput, and how the throughput scales with

more resources. In this workload, each function is a loop of appending 1KB log

records. Boki is configured to use JournalStore (the second option mentioned in

§ 4.5) as the storage backend. Results are shown in Table 4.2a. From the table, we

103

Concurrent functions / Storage (S) nodes
320/4S 640/8S 1280/16S 2560/32S

nmeta = 3 156.1 314.5 654.8 1142.7
nmeta = 5 155.9 323.1 639.4 1153.8

(a) Append throughput (in KOp/s) of a single LogBook, where nmeta denotes the replication
factor of Boki’s metalog. Boki can scale append throughput of a totally ordered log to 1.2M
Ops/s.

1 PhyLog 2 PhyLogs 4 PhyLogs

100 LogBooks 161.8 324.5 696.9
100K LogBooks 162.8 310.3 665.9

(b) Aggregate throughput (in KOp/s) when using multiple physical logs (PhyLogs) to
virtualize LogBooks. Boki scales with more physical logs, and can efficiently virtualize
100K LogBooks.

Table 4.2: Boki’s throughput in append-only microbenchmark. Boki is configured
to use JournalStore backend for storing LogBook records (§ 4.6.1).

see that when Boki is configured with 64 nodes, the append throughput scales to

1.2M Ops/s under 2,560 concurrent appending functions. At this point, the median

latency is 1.94ms, and the p99 tail latency is 6.33ms. We also increase the replication

factor of metalogs (nmeta) to 5, that provides higher durability for a metalog but

potentially affects the metalog’s append latency. However, it demonstrates similar

LogBook throughput and scalability as nmeta = 3.

• Can Boki efficiently virtualize LogBooks? We use the same append-only

workload, but log appends are uniformly distributed over many LogBooks. We use

1, 2, and 4 physical logs to virtualize 100 and 100K LogBooks. Boki is configured

with 4 function and 4 storage nodes when using one physical log, and resources

104

Throughput Latency (ms)
(KOp/s) median 99% tail

RocksDB (LSM) 764.2 1.39 53.2
Tkrzw (B-tree) 651.1 1.58 25.7

Stronger durability with on-disk journal
JournalStore 654.8 1.66 5.42
RocksDB with journal 655.4 1.47 79.3
Tkrzw with journal 448.6 1.98 45.6

Table 4.3: Comparison of Boki’s different storage backends, using append-only
microbenchmark (§ 4.6.1). Using Boki’s on-disk journal achieves stronger durability,
though results in slightly lower throughput. Also note JournalStore achieves the
lowest tail latency among all options.

are added linearly with more physical logs. Table 4.2b shows the results. From the

table, we can see Boki is capable of virtualizing LogBooks with high density.

• How do Boki’s log storage options compare to each other? As described in

§ 4.5.1, Boki supports multiple options for storing log records. We use the append-

only workload to compare throughput and latencies of different options. In the

evaluation, Boki is configured with 16 storage nodes, and we use 1,280 concurrent

appending functions. Table 4.3 shows the result. From the result, we see using

Boki’s on-disk journal can achieve a stronger durability guarantee but with the

cost of lower append throughput and higher latency. Notably, Boki’s JournalStore

can achieve very low 99% tail latency (5.42ms) compared with other options.

• How fast can Boki functions read LogBook records? We use an append-and-

read workload to measure read latencies, where each function loops a procedure

that first appends a log record, then reads the appended record 4 times. We configure

Boki with 8 function and 8 storage nodes. Table 4.4 shows the results when using

105

Local LogBook (LB) engine Remote
cache hit cache miss LB engine

median 0.09ms 0.29ms 0.43ms
99% tail 0.40ms 0.75ms 0.99ms

Table 4.4: Boki’s read latencies under different scenarios (§ 4.6.1).

-0.3 s -0.2 s -0.1 s 0.0 s 0.1 s 0.2 s 0.3 s 0.4 s
100

101

102

La
te

nc
y

(m
s)

Metalog backed by 3 sequencers (nmeta=3)
median
99% tail

-0.3 s -0.2 s -0.1 s 0.0 s 0.1 s 0.2 s 0.3 s 0.4 s
100

101

102

La
te

nc
y

(m
s)

Metalog backed by 5 sequencers (nmeta=5)
median
99% tail

Figure 4.11: Log append latencies during reconfiguration (§ 4.6.1). The x-axis shows
the timeline (in seconds). The reconfiguration starts at t = 0.

JournalStore for log storage. For other storage options, we observe similar latency

numbers. For remote engine case, we enforce Boki to use remote LogBook engines

for log reads. Cache hits take 86µs and never leave the local LogBook engine,

retrieving the result from the record cache (§ 4.3.4).

• What is the impact of reconfiguration? We use the append-only workload

to evaluate the impact of reconfiguration. In the experiment, Boki is reconfigured

to a new set of sequencer nodes. New sequencer nodes are provisioned before the

reconfiguration, to factor out provisioning delays from the experiment. Figure 4.11

shows the results. We see that Boki recovers to normal append latency after

reconfiguration within 100ms. The actual reconfiguration protocol, executed by

the controller, takes 15.7ms and 18.1ms, in experiments of nmeta = 3 and nmeta = 5,

respectively.

106

50 100 150 200 250 300 350 400

101

102

50
%

 la
te

nc
y

(m
s)

Unsafe baseline Beldi BokiFlow

50 100 150 200 250 300 350 400
Throughput (requests per second)

101

102

103

99
%

 la
te

nc
y

(m
s)

(a) Movie review workload.

100 200 300 400 500 600 700

101

102

50
%

 la
te

nc
y

(m
s)

Unsafe baseline Beldi BokiFlow

100 200 300 400 500 600 700
Throughput (requests per second)

101

102

103

99
%

 la
te

nc
y

(m
s)

(b) Travel reservation workload.

Figure 4.12: Comparison of BokiFlow with Beldi [160]. BokiFlow takes advan-
tage of the LogBook API. “Unsafe baseline” refers to running workflows without
Beldi’s techniques, where it cannot guarantee exactly-once semantics or support
transactions (§ 4.6.2).

Read Write CondWrite Invoke
0

20

40

La
te

nc
y

(m
s) Unsafe baseline

Beldi
BokiFlow

Figure 4.13: Microbenchmarks of Beldi primitive operations (§ 4.6.2). Main bars
show median latencies, while error bars show 99% latencies.

4.6.2 BokiFlow: fault-tolerant workflows

We evaluate BokiFlow by comparing it with Beldi [160]. We use Beldi’s

workflow workloads, which model movie reviews and travel reservations. Both

of them are adapted from DeathStarBench [27, 100] microservices. For a fair

comparison, we port Beldi and its workloads to Nightcore, the underlying FaaS

runtime of Boki. Both BokiFlow and Beldi store user data in DynamoDB [6].

BokiFlow stores workflow logs in a LogBook, while Beldi uses its linked DAAL

107

technique to store logs in DynamoDB. For both systems, they are configured with 8

function nodes and Boki is configured with 3 storage nodes. Boki uses JournalStore

as the storage backend.

Figure 4.12 shows the results. In both workloads, BokiFlow achieves much

lower latencies than Beldi for all throughput values. In the movie workload, when

running at 200 requests per second (RPS), BokiFlow’s median latency is 28.7ms,

4.2× lower than Beldi (121ms). In the travel workload, BokiFlow’s median latency

is 20.5ms at 500 RPS, 3.8× lower than Beldi (78ms). In this experiment, we also

run a baseline without Beldi’s techniques, where it cannot guarantee exactly-once

semantics or support transactions for workflows. When comparing BokiFlow with

this baseline, we see that exactly-once semantics and transactions increase median

latency by 3.3× in the movie workload, and by 1.8× in the travel workload.

We then run the microbenchmark that evaluates Beldi’s primitive opera-

tions (Figure 13 in the Beldi paper [160]). Results are shown in Figure 4.13. The

Invoke operation shows the largest differences among the three implementations

and Invoke operations are very frequent in microservice-based workflows. In the

baseline without workflow logs, the Invoke operation is very fast (well below 1ms).

The underlying FaaS runtime, Nightcore, is heavily optimized to reduce invocation

latencies. In BokiFlow, the Invoke operation needs needs 5 LogBook appends, thus

it has a median latency of 4.0ms. Two of the five log appends are demonstrated

in Figure 4.6 and the other three appends are made within the child function. For

comparison, Invoke operation in Beldi also need 5 log appends, but has a median

latency of 19ms, because of multiple DynamoDB updates for each log append.

108

64 clients 96 clients 128 clients 192 clients
0
5

10
15
20

T-
pu

t (
KO

p/
s)

1.20x
1.20x

1.22x
1.28x

MongoDB
BokiStore

(a) Throughput of BokiStore compared with MongoDB.

Request types 50% latency 99% latency
Mongo Boki Mongo Boki

UserLogin (non-txn read) 0.86 1.41 3.32 5.47
UserProfile (non-txn read) 0.86 0.99 3.57 4.93
GetTimeline (read-only txn) 7.57 3.24 25.01 10.09

NewTweet (read-write txn) 7.72 5.42 21.39 10.56

(b) Latencies (in ms) under 192 clients. Although non-transactional reads in BokiStore are
slower than MongoDB, transactions in BokiStore are up to 2.5× faster. Best performing
result is in bold.

Figure 4.14: Evaluating BokiStore on Retwis workload (§ 4.6.3). Boki uses Journal-
Store as storage backend.

These results justify the value of shared logs for the serverless environment, where

building logging layers using a cloud database is difficult to make performant.

4.6.3 BokiStore: durable object storage

Retwis workload. To evaluate BokiStore, we build a transaction workload in-

spired by Retwis, a simplified Twitter clone [64]. The Retwis workload has been

used as a transaction benchmark in previous work [161, 162]. We re-implement

the Retwis workload in Go, requiring 1,458 lines of code. Our implementation uses

BokiStore objects to store users, tweets, and timelines. For comparison, we also

implement a version that uses MongoDB [61] to store objects, because MongoDB

109

also employs a JSON-derived data model.

The evaluation workload first initializes 10,000 users, and then runs a

mixture of four functions: UserLogin (15%), UserProfile (30%), GetTimeline (50%),

and NewTweet (5%). UserLogin are UserProfile are normal single object reads.

GetTimeline is a read-only transaction that reads the timeline and multiple tweets.

NewTweet is a transaction that writes multiple user, tweet, and timeline objects.

In the experiment, we configure Boki with 8 function nodes and 3 storage

nodes using JournalStore. MongoDB is configured with 3 replicas. To ensure snap-

shot isolation in MongoDB transactions, we use a write concern of “majority” [74]

and a read concern of “snapshot” [51]. For BokiStore, we configure LogBook en-

gines on all 8 function nodes to have log index for the target LogBook, which

achieves best data locality. We analyze the performance impact of using remote

LogBook engines in § 4.6.5.

Figure 4.14 shows the results. From the figure, we see BokiStore achieves

1.20–1.28× higher throughput thanMongoDB.When breaking down latency details

by request types, we see BokiStore has considerable advantages over MongoDB

in transactions (up to 2.5× faster). On the other hand, BokiStore is slower than

MongoDB for non-transactional reads. This is caused by the log-structure nature

of BokiStore, where log replay incurs overheads for data reads.

Comparison with Cloudburst. Cloudburst [146] is a recently proposed stateful

FaaS runtime, which exports a put/get interface (i.e., key-value store) for functions

to store state. BokiStore can also be used as a key-value store, by using keys as

110

48 clients 96 clients 192 clients
0

1

2

3

La
te

nc
y

(m
s)

Get latencies
Cloudburst
BokiStore

48 clients 96 clients 192 clients
0

1

2

3

4

La
te

nc
y

(m
s)

Put latencies
Cloudburst
BokiStore

48 clients 96 clients 192 clients
0

100

200

300

T
hr

ou
gh

pu
t (

K
O

p/
s)

1.49x

1.62x

2.16x

Get throughput
Cloudburst
BokiStore

48 clients 96 clients 192 clients
0

50

100

150

T
hr

ou
gh

pu
t (

K
O

p/
s)

0.85x

1.00x

1.33x

Put throughput
Cloudburst
BokiStore

Figure 4.15: Comparison of BokiStore with Cloudburst [146]. We measure the
latencies and throughput for put and get operations, using different numbers
of concurrent clients. In the latency charts, solid lines show median latencies,
and dashed lines show 99% tail latencies. BokiStore not only provides stronger
consistency guarantees, but also achieves higher performance than Cloudburst
(§ 4.6.3).

object names and storing values in the corresponding BokiStore object. However,

BokiStore provides stronger consistency guarantees (sequential) than Cloudburst

(causal). BokiStore also supports transactions reading and modifying multiple keys,

which are not supported by Cloudburst.

We use a microbenchmark to compare Cloudburst’s performance with Bok-

iStore. Both systems use 8 storage nodes and 8 function nodes in the experiment.

Figure 4.15 shows the result. BokiStore can achieve up to 2.16× higher through-

put than Cloudburst on get operations. For put operations, BokiStore achieves

1.33× higher throughput when the concurrency is high. BokiStore provides higher

throughput and lower median latency at 192 clients than Cloudburst, but it does

have higher tail latency.

111

4.6.4 BokiQueue: message queues

We evaluate BokiQueue by comparing it with Amazon Simple Queue Service

(SQS) [8] and Apache Pulsar [10]. Amazon SQS is a fully managed message queue

service from AWS, while Pulsar is a popular open source distributed message

queue. Similar to BokiQueue, both SQS and Pulsar use sharding to improve the data

throughput of their message queues. In the experiment, we configure Boki with

8 function nodes and 3 storage nodes. Boki is configured with Tkrzw as storage

backend for best performance. For Pulsar, we run its broker services on function

nodes for better locality, and use the 3 storage nodes for queue data.

We use a fixed number of producer and consumer functions for the eval-

uation, where each producer keeps pushing 1KB messages to the queue. We

experiment with three ratios of producers to consumers (P:C ratio), which are 1:4,

4:1, and 1:1. In the evaluation, we measure the message throughput of the queue,

and the median and p99 latency of message deliveries.

Table 4.5 shows the results. When the P:C ratio is 1:4, the queue is lightly

loaded. We see both BokiQueue and Pulsar achieve double the throughput of

Amazon SQS. BokiQueue achieves up to 1.6× lower latencies than Pulsar. When

the P:C ratio is 4:1, the queue is saturated. Amazon SQS suffers significant queueing

delays, limiting its throughput. BokiQueue and Pulsar have very similar throughput,

while BokiQueue achieves 1.36× lower latency than Pulsar in the case of 256

producers. Finally, when the P:C ratio is 1:1, the queue is balanced. BokiQueue

consistently achieves higher throughput and lower latency than both Amazon SQS

and Pulsar.

112

Producer/
Consumer

Throughput Delivery latency (ms)
SQS Pulsar Boki SQS Pulsar Boki

16P/64C 2.25 5.05 5.21 6.27 (52.5) 4.01 (12.3) 2.97 (5.05)
32P/128C 4.03 9.67 10.4 6.01 (51.3) 6.70 (12.8) 3.18 (6.12)
64P/256C 7.62 14.1 15.5 6.08 (56.5) 7.39 (13.7) 4.67 (14.8)

64P/16C 2.34 8.71 7.92 33.9 (228) 6.20 (12.7) 5.10 (14.9)
128P/32C 5.35 14.6 14.1 53.9 (370) 7.38 (14.0) 5.48 (19.2)
256P/64C 9.77 19.1 21.1 99.8 (764) 7.81 (33.7) 5.75 (20.2)

64P/64C 6.37 10.0 10.5 7.22 (76.0) 6.77 (12.9) 3.15 (6.64)
128P/128C 10.1 17.8 21.0 7.24 (79.6) 7.74 (21.4) 3.81 (9.53)
256P/256C 18.5 25.0 31.5 12.1 (84.5) 8.21 (39.5) 5.64 (17.5)

Table 4.5: Comparison of BokiQueue with Amazon SQS [8] and Pulsar [10] (§ 4.6.4).
Boki is configured with Tkrzw as storage backend, which achieves best performance
for BokiQueue. Throughput is measured in 103 message/s. Delivery latency is the
duration that a message stays in the queue. Latencies are shown in the form of
“median (99% tail)”. For each row in the table, best performing result is in bold.

Combining these three cases, BokiQueue achieves 1.70–2.16× higher through-

put than Amazon SQS, and up to 17× lower latency. Compared with Pulsar, Bok-

iQueue achieves 1.10–1.26× higher throughput, and up to 1.6× lower latency.

4.6.5 Analysis

The importance of auxiliary data. We describe in § 4.4.4 the log replay opti-

mization using LogBook’s auxiliary data. We use Retwis workload to demonstrate

its importance for BokiStore. We run an experiment that disables this optimiza-

tion. Furthermore, to demonstrate the efficiency of Boki’s storage mechanism for

auxiliary data, we modify Boki to store auxiliary data in a dedicated Redis instance.

Table 4.6 shows the results. From the table, we see that the log replay

113

Workload duration 1min 3min 10min 30min
Optimization disabled 1,565 939 – –
AuxData w/ Redis 11,014 10,046 9,548 9,344
AuxData w/ Boki 11,388 11,078 10,923 10,891

Table 4.6: The importance of log replay optimization using auxiliary data (§ 4.6.5).
The table shows Retwis throughput (in Op/s).

optimization is crucial for BokiStore to achieve an acceptable performance. The

results also show the optimization is robust even for long executions, where more

object writes are logged. Compared to the Redis-backed implementation, Boki

achieves 1.17× higher throughput. Boki’s approach is more efficient because it

maintains data locality by reusing the record cache within LogBook engines.

Locality impact from LogBook engines. In the previous evaluation of Boki-

Store, we configure Boki so all LogBook reads are served by local LogBook engines.

In a large-scale deployment, having all LogBook engines maintain an index for

a particular physical log is not viable. Boki relies on the function scheduler to

optimize for the locality of LogBook engines.

To experiment with the impact from using remote LogBook engines we

limit the ratio of log reads that are locally processed, with the remainder processed

remotely. Table 4.7 shows the results. We see even under a poor locality of LogBook

engines, the performance drop is moderate (e.g., 77% of maximum throughput at

25% local reads).

Read locality also comes from the record cache included in LogBook engines.

The cache stores both record data and auxiliary data for LogBook records. We ex-

114

Local reads 25% 50% 75% 100%
Throughput 8,548 9,319 10,262 11,078

Normalized tput 0.77x 0.84x 0.93x 1.00x

Table 4.7: Locality impact from LogBook engines (§ 4.6.5). The table shows Retwis
throughput (in Op/s), when adjusting the percentage of reads processed by local
LogBook engines.

LRU cache size 16MB 32MB 64MB 1GB
Auxiliary data only stored on function nodes

Throughput 3,561 10,476 11,263 11,245
Auxiliary data also backed up on storage nodes

Throughput 11,358 11,852 12,032 12,075

Table 4.8: LogBook engines maintain local cache for log records, and the cache size
has performance impact for Boki’s applications (§ 4.6.5). The table shows Retwis
throughput (in Op/s).

periment with different cache sizes to analyze its impact on BokiStore performance.

Results are shown in Table 4.8. We observe a sharp dorp in throughput when the

cache size is decreased to 16MB. The cause of this drop is insufficient cache storage

for auxiliary data. Auxiliary data is important for BokiStore performance, and a

small record cache decreases the effectiveness of the log replay optimization. We

modify Boki to backup auxiliary data on storage nodes, so that under a cache miss,

storage nodes can also return auxiliary data. With this mechanism, small cache

sizes no longer cause a sharp dorp in performance.

Log index versus fixed sharding. In § 4.3.4, we motivate the log index design

because it allows records from a LogBook to be placed in arbitrary log shards. An

115

Uniform Zipf (s = 3) Zipf (s = 5)
Fixed sharding 242.7 164.0 129.6
Log index (Boki) 250.6 253.4 278.6

Table 4.9: Append throughput (in KOp/s) when log appends are distributed over
128 LogBooks under a uniform or Zipf distribution.

Concurrent functions / LogBook engines
100/8E 200/16E 300/24E 400/32E 600/48E

T-put (txn/s) 6,548 12,749 18,618 23,662 30,286
Normalized 1.00x 1.95x 2.84x 3.61x 4.63x

Table 4.10: Scaling read-only transactions with LogBook engines (§ 4.6.5). The
experiment runs Retwis workload under a fixed write rate.

alternative approach is fixed sharding used in previous systems such as vCorfu [154].

We use the append-only microbenchmark to demonstrate the advantage of Boki’s

approach. For comparison, we modify Boki to use a fixed sharding approach,

where a hashing function maps each LogBook to a log shard. Results are shown

in Table 4.9. When log appends are uniformly distributed over LogBooks, the two

approaches show no difference. However, when the distribution is skewed, fixed

sharding suffers from uneven loads between log shards, while Boki’s log index

approach is unaffected.

Scaling LogBook engines. We then demonstrate the scalability of LogBook

engines, by running read-only transactions in the Retwis workload. The workload

is a mixture of read-only transactions (GetTimeline) and read-write transactions

(NewTweet). In the experiment, we add more function nodes to scale LogBook

116

engines, while always using 3 storage nodes. Every LogBook engine maintains a

log index for the target LogBook. We fix the rate of NewTweet to 700 requests per

second. Results are shown in Table 4.10. The results demonstrate Boki can scale

from 8 LogBook engines to 48, thereby providing 4.63× higher read throughput.

Garbage collection (GC). As discussed in § 4.4.5, Boki provides the logTrim

API for its support libraries to reclaim space from old and useless log records. We

demonstrate the effectiveness of Boki’s GCmechanism in BokiStore and BokiQueue.

For BokiStore, we run a workload where 96 concurrent functions modify 1,000

BokiStore objects. For BokiQueue, we run a workload with 200 producer and 200

consumer functions. Boki is configured to use JournalStore as the storage backend.

Figure 4.16 shows the state of one storage node. From the figure, we can see GC

effectively controls disk utilization, while not affecting write throughput.

For comparison, we also run the same BokiStore and BokiQueue workloads

without garbage collection. In both workloads, we found GC has no influence on

the throughput. However, enabling GC in BokiQueue can reduce the tail latency of

message delivery from 29.5ms to 8.90ms. For the BokiStore workload, we observe

no difference in request latencies.

To quantify CPU overhead, we compute the average CPU utilization over

the time span shown in Figure 4.16. In BokiStore experiments with GC disabled, the

average system and user utilization is 162% and 79% (241% total). For comparison,

enabling GC increases CPU utilization by 13%: system and user utilization rise

to 178% and 95% (273% total). In BokiQueue experiments with GC disabled, the

117

0%

100%

200%

300%

400%

C
PU

 ti
m

e

BokiStore (GC disabled)
sys time user time

0 s 20 s 40 s 60 s 80 s 100 s 120 s
0

2000

4000

6000

D
is

k
ut

ili
za

tio
n

(M
B

)

0

10

20

W
rit

e
t-p

ut
 (M

B
/s

)

0%

100%

200%

300%

400%

C
PU

 ti
m

e

BokiStore (GC enabled)
sys time user time

0 s 20 s 40 s 60 s 80 s 100 s 120 s
0

100

200

300

400

D
is

k
ut

ili
za

tio
n

(M
B

)
0

10

20

W
rit

e
t-p

ut
 (M

B
/s

)

0%

100%

200%

300%

400%

C
PU

 ti
m

e

BokiQueue (GC disabled)
sys time user time

0 s 10 s 20 s 30 s 40 s 50 s
0

1000

2000

3000

D
is

k
ut

ili
za

tio
n

(M
B

)

0

10

20

30

W
rit

e
t-p

ut
 (M

B
/s

)

0%

100%

200%

300%

400%

C
PU

 ti
m

e

BokiQueue (GC enabled)
sys time user time

0 s 10 s 20 s 30 s 40 s 50 s
0

50

100

150

200

D
is

k
ut

ili
za

tio
n

(M
B

)

0

10

20

30

W
rit

e
t-p

ut
 (M

B
/s

)
Figure 4.16: Demonstration of garbage collection (GC) in BokiStore and BokiQueue
(§ 4.6.5). All figures show the state of one storage node: the upper chart shows
CPU time; and the lower chart shows disk utilization and write throughput. One
storage node has 4 CPU cores. For BokiStore experiments, we show a duration
of 120 seconds in the middle of running. For BokiQueue experiments, we show a
duration of 50 seconds.

118

read (99%) read (99.9%) append (99%) append (99.9%)
0

5

10

15
La

te
nc

y
(m

s)
every 1 second
every 3 seconds
every 10 seconds

every 30 seconds
no reconfiguration

Figure 4.17: Sensitivity study of LogBook latencies to reconfiguration frequency
(§ 4.6.5). Reconfigurations have little impact on log read latencies, but can signif-
icantly affect tail latencies of log appends when they are frequent. In all tested
frequencies, throughput of log reads and appends is not affected (same as “no
reconfiguration”). Data are collected over a 5-minute period.

average system and user utilization is 208% and 88% (296% total). Enabling GC

decreases system utilization to 159% and increases user utilization to 105% (264%

total). GC raises CPU utilization by 13% in BokiStore, but lowers it by 12% in

BokiQueue.

Sensitivity study of reconfigurations. We finally study how reconfiguration

frequency affects Boki’s performance. In the experiment, Boki is configured with a

single physical log using nmeta = 3. To allow reconfigurations without frequently

allocating new nodes, we provision redundant nodes for Boki. In the experiment,

8 sequencer nodes are provisioned, while only 3 of them are active at one time

because nmeta = 3. Reconfigurations are manually triggered periodically with a

fixed frequency, from every 1 second to every 30 seconds. For each reconfiguration,

3 sequencer nodes are randomly chosen to store the metalog in the new term. We

run a workload of log appends and reads (check tail), where the ratio between

appends and reads is 1:4. 320 concurrent functions are executed over 8 function

119

nodes. Results are shown in Figure 4.17. For read operations, we see that even

frequent reconfigurations have little impact on their latencies. But for append op-

erations, when reconfigurations become very frequent, their tail latencies increase

significantly.

4.7 Summary

State management has become a major challenge in serverless computing.

Boki is the first system that allows stateful serverless functions to manage state

using distributed shared logs. Boki’s shared log abstraction (i.e., LogBooks) can

support diverse serverless use cases, including fault-tolerant workflows, durable

object storage, and message queues. We build Boki support libraries for these use

cases, allowing end applications to take advantages of LogBooks with minimal

effort.

Boki shared logs achieve elasticity, data locality, and resource efficiency,

enabled by a novel metalog design. The metalog orders shared log records with

high throughput and it provides read consistency while allowing service providers

to optimize the write and read path of the shared log in different ways. In Boki, the

metalog provides a unified solution to the problems of log ordering, consistency,

and fault tolerance.

To justify the value of shared logs in stateful serverless computing, we use

realistic cloud workloads to evaluate Boki support libraries. Evaluation results

suggest the shared-log-based approach for serverless state management can lead

up to 4.3× performance advantages. Boki and its support libraries are open source

120

on GitHub: https://github.com/ut-osa/boki.

121

https://github.com/ut-osa/boki

Chapter 5

Related Work

5.1 Serverless computing

Serverless computing enables a new way of building cloud applications [12,

22, 56, 68], having the benefit of greatly reduced operational complexity. Serverless

functions, or function as a service (FaaS), provide a simple programming model

of stateless functions. It allow developers to upload simple functions to the cloud

provider which are invoked on demand. The cloud provider manages the execu-

tion environment of serverless functions. While being simple and highly elastic,

FaaS has empowered diverse applications including video processing [80, 99], data

analytics [110, 138], machine learning [92, 145], distributed compilation [98], and

transactional workflows [160].

Recent research on serverless computing has mostly focused on data inten-

sive workloads [80, 92, 98, 99, 110, 138, 145], leading invocation latency overheads

to be largely overlooked. SAND [77] features a local message bus as the fast path

for chained function invocations. However, SAND only allows a single, local call

at the end of a function, while Nightcore supports arbitrary calling patterns (e.g.,

Figure 3.1). Faasm [145]’s chained function calls have the same functionality as

Nightcore’s internal function calls, but they are executed within the same process,

relying onWebAssembly for software-based fault isolation. One previous work [89]

122

also notices that FaaS systems have to achieve microsecond-scale overheads for

efficient support of microservices, but they demonstrate only a proof-of-concept

FaaS runtime that relies on Rust’s memory safety for isolation and lacks end-to-end

evaluations on realistic microservices.

5.2 Microservices

The emergence of microservices for building large-scale cloud applications

has prompted recent research on characterizing their workloads [100, 147, 150, 167],

as well as studying their hardware-software implications [100, 147, 148]. Microser-

vices have a higher communication-to-computation ratio than traditional work-

loads [100] and frequent microsecond-scale RPCs, so prior work has studied various

software and hardware optimization opportunities for microsecond-scale RPCs, in-

cluding transport layer protocols [113, 118], a taxonomy of threading models [148],

heterogeneous NIC hardware [124], data transformations [136], and CPU memory

controllers [149]. The programming model of serverless functions maps inter-

service RPCs to internal function calls, allowing Nightcore to avoid inter-host net-

working and transparently eliminate RPC protocol overheads. X-Containers [144] is

a recently proposed LibOS-based container runtime, that improves the efficiency of

inter-service communications for mutually trusting microservices. For comparison,

Nightcore still relies on the current container mechanism (provided by Docker),

which does not require microservices to trust each other.

123

5.3 System supports for microsecond-scale I/Os

Prior work on achieving microsecond-scale I/O has been spread across

various system components, ranging from optimizing the network stack [107, 113,

118]; designs for a dataplane OS [87, 112, 127, 134, 135, 137]; thread scheduling for

microsecond-scale tasks [90, 112, 134, 139, 148]; and novel filesystems leveraging

persistent memory [120,126,159]. Additionally, the efficiency of I/O is also affected

by the user-facing programming model [103, 156] and the underlying mechanism

for concurrency [119, 153]. A recent paper from Google [86] argues that current

systems are not tuned for microsecond-scale events, as various OS building blocks

have microsecond-scale overheads. Eliminating these overheads requires a tedious

hunt for the “killer microseconds.” Inspired by this work, the design of Nightcore

eliminates many of these overheads, making it practical for a microsecond-scale

serverless system.

5.4 Stateful serverless computing

State management remains a key challenge in the current serverless envi-

ronment [104,140]. To meet the increasing demand for stateful serverless, there are

recent attempts from industry, e.g., Cloudflare’s Durable Objects [72] and Azure’s

Entity Functions [28]. These systems are still in their early stages and have seen

limited adoption.

There are also proposals from academia, e.g., Pocket [117], Cloudburst [146],

Faasm [145], and Jiffy [115]. These projects have different focus, e.g., heterogeneous

storage technology [117], lightweight isolation [145], and auto-scaling [146]. These

124

systems all export put-get interfaces (i.e., a key-value store) for functions to manage

state (Jiffy [115] also supports file and FIFO queue interfaces). Boki is the first to

study a different interface for serverless state management, the shared log API.

Boki’s shared log approach is motivated by the fault-tolerance and consistency chal-

lenges encountered by stateful serverless applications, which the put-get interface

cannot easily address.

A recent article [140] argues future serverless abstractions will be general-

purpose, where cloud providers expose a few basic building blocks, e.g., cloud

functions (FaaS) for computation and serverless storage for state management. The

shared log and key-value store are both promising storage building blocks, which

can work together to enable new serverless applications.

5.5 Distributed shared logs

Recent studies on distributed shared logs [82–85,96,125,154] heavily inspire

the design of Boki. A shared log is a powerful primitive for achieving strong data

consistency in the presence of failures, because it can be used for state machine

replication (SMR) [141], the canonical approach for building fault-tolerant services.

Boki leverages Scalog [96]’s high-throughput ordering protocol. Virtual

consensus in Delos [82] inspires Boki’s design of metalogs. Materialized streams

in vCorfu [154] inspire the design of log tags in the LogBook API, and LogBook’s

virtualization. However, Boki’s metalog design distinguishes it from these prior

works. The logical decoupling provided by the metalog allows existing techniques

to be adopted smoothly, while enabling new techniques, e.g., the log index for

125

read efficiency. For applications, Tango [84]’s techniques enable serverless durable

objects [72] backed by shared logs.

5.6 Fault-tolerant workflows

Orchestrating serverless functions as workflows is an important serverless

paradigm, provided by all major cloud providers [18, 29, 73]. Workflows aim at

providing exactly-once execution semantics, but stateful serverless functions (SSF)

complicate this goal.

Beldi [160] proposes solutions for current serverless platforms. Beldi’s

mechanism is inspired by Olive [142]’s log-based fault tolerance protocol. In a

Beldi workflow, during execution of SSF operations, the actions are logged. Beldi

periodically re-executes SSFs that encounter failures. The operation log is used to

prevent duplicated execution of operation, so that at-most-once execution semantics

are guaranteed. On the other hand, re-execution for failed SSFs ensures at-least-once

execution semantics.

Beldi’s log-based fault-tolerant mechanism motivates Boki’s shared log

approach for stateful serverless computing. However, their techniques would need

to be adapted for use with shared logs (§ 4.4.1), mostly because the workflow log is

not co-located with user data in the same database.

126

Chapter 6

Conclusion

While serverless computing is becoming popular, the current serverless

infrastructure faces challenges from emerging cloud applications. On the one

hand, latency-sensitive workloads such as interactive microservices impose strict

requirements for FaaS runtime overheads. On the other hand, stateful applications

that require strong guarantees for their critical states demand storage APIs designed

for data consistency and fault tolerance from the serverless ecosystem.

This dissertation propose two novel system designs, Nightcore and Boki, to

address these new challenges. Nightcore is a FaaS runtime with microsecond-scale

overheads, specifically optimizing for latency-sensitive, interactive microservices.

Boki is a serverless runtime for stateful applications, by providing shared logs for

functions. Boki shared logs allow stateful applications to coordinate critical state

with consistency and fault tolerance.

A recent article [140] anticipates future serverless computingwill be general-

purpose, where the serverless infrastructure fully hides details of servers from

cloud applications. Towards this goal, we not only have to continue to optimize

current function-as-a-service systems for broader range of stateless applications,

but also need to re-think how to provide state storage abstractions to attract more

stateful applications.

127

We believe this dissertation makes one useful step towards shaping the

future of serverless computing. No matter if serverless computing will be successful

in near future, we can already observe the demands for low latencies, data consis-

tency, and fault tolerance in today’s cloud computing. As the economic impact of

cloud computing is growing, we hope ideas behind this dissertation can inspire

future cloud computing research.

128

Bibliography

[1] 4 Microservices Examples: Amazon, Netflix, Uber, and Etsy. [Accessed Jan,

2021].

[2] Accessing Amazon CloudWatch logs for AWS Lambda. [Accessed Dec,

2020].

[3] Addressing Cascading Failures. [Accessed Jan, 2021].

[4] Adopting Microservices at Netflix: Lessons for Architectural Design. [Ac-

cessed Jan, 2021].

[5] Airbnb’s 10 Takeaways from Moving to Microservices. [Accessed Jan, 2021].

[6] Amazon DynamoDB | NoSQL Key-Value Database | Amazon Web Services.

[Accessed Jan, 2021].

[7] Amazon ElastiCache- In-memory data store and cache. [Accessed Jan, 2021].

[8] Amazon SQS | Message Queuing Service | AWS. [Accessed Apr, 2021].

[9] Announcing WebSocket APIs in Amazon API Gateway. [Accessed Dec,

2020].

[10] Apache Pulsar. [Accessed Apr, 2021].

[11] Apache Thrift - Home. [Accessed Jan, 2021].

129

[12] Architecture: Scalable commerce workloads using microservices. [Accessed

Jan, 2021].

[13] asyncio — Asynchronous I/O. [Accessed Jan, 2021].

[14] AWS Fargate - Run containers without having to manage servers or clusters.

[Accessed Jan, 2021].

[15] AWS Lambda execution context - AWS Lambda. [Accessed Jan, 2021].

[16] AWS Lambda FAQs. [Accessed Jan, 2021].

[17] AWS Lambda – Serverless Compute - Amazon Web Servicesy. [Accessed

Jan, 2021].

[18] AWS Step Functions. [Accessed Jan, 2021].

[19] Azure Functions Serverless Compute | Microsoft Azure. [Accessed Jan,

2021].

[20] BCC - Tools for BPF-based Linux IO analysis, networking, monitoring, and

more. [Accessed Jan, 2021].

[21] Best practices for working with AWS Lambda functions. [Accessed Dec,

2020].

[22] Building serverless microservices in Azure - sample architecture. [Accessed

Jan, 2021].

[23] Cloud Functions | Google Cloud. [Accessed Jan, 2021].

130

[24] Cloud Object Storage | Store and Retrieve Data Anywhere | Amazon Simple

Storage Service (S3). [Accessed Jan, 2021].

[25] CorfuDB. [Accessed Apr, 2021].

[26] Coursera Case Study. [Accessed Jan, 2021].

[27] delimitrou/DeathStarBench: Open-source benchmark suite for cloud mi-

croservices. [Accessed Jan, 2021].

[28] Durable entities - Azure Functions. [Accessed Jan, 2021].

[29] Durable Functions Overview - Azure | Microsoft Docs. [Accessed Apr, 2021].

[30] eniac/Beldi. [Accessed Apr, 2021].

[31] Enough with the microservices. [Accessed Jan, 2021].

[32] Event-based Concurrency (Advanced). [Accessed Jan, 2021].

[33] eventfd(2) - Linux manual page. [Accessed Jan, 2021].

[34] firecracker/network-performance.md atmaster · firecracker-microvm/firecracker.

[Accessed Jan, 2021].

[35] giltene/wrk2: A constant throughput, correct latency recording variant of

wrk. [Accessed Jan, 2021].

[36] Go, don’t collect my garbage. [Accessed Jan, 2021].

131

[37] Go memory ballast: How I learnt to stop worrying and love the heap. [Ac-

cessed Jan, 2021].

[38] GoogleCloudPlatform/microservices-demo. [Accessed Jan, 2021].

[39] gRPC - A high-performance, open source universal RPC framework. [Ac-

cessed Jan, 2021].

[40] IPC settings | Docker run reference. [Accessed Jan, 2021].

[41] libuv | Cross-platform asynchronous I/O. [Accessed Jan, 2021].

[42] Lyft Case Study. [Accessed Jan, 2021].

[43] Manage your function app. [Accessed Jan, 2021].

[44] Microservice Trade-Offs. [Accessed Jan, 2021].

[45] Microservices - Wikipedia. [Accessed Jan, 2021].

[46] New for AWS Lambda – 1ms Billing Granularity Adds Cost Savings. [Ac-

cessed Apr, 2022].

[47] OpenFaaS | Serverless Functions, Made Simple. [Accessed Jan, 2021].

[48] Performance Under Load. [Accessed Jan, 2021].

[49] plugin - The Go Programming Language. [Accessed Jan, 2021].

[50] Provisioned Concurrency for Lambda Functions. [Accessed Jan, 2021].

[51] Read Concern "snapshot" — MongoDB Manual. [Accessed Apr, 2021].

132

[52] Remind Case Study. [Accessed Jan, 2021].

[53] Rewriting Uber Engineering: The Opportunities Microservices Provide. [Ac-

cessed Jan, 2021].

[54] RocksDB | A persistent key-value store | RocksDB. [Accessed Apr, 2021].

[55] Serverless and Microservices: a match made in heaven? [Accessed Dec,

2020].

[56] Serverless Microservices - Microservices on AWS. [Accessed Jan, 2021].

[57] Serverless Microservices reference architecture. [Accessed Dec, 2020].

[58] shm_overview(7) — Linux manual page. [Accessed Jan, 2021].

[59] Splitting Up a Codebase into Microservices and Artifacts. [Accessed Jan,

2021].

[60] "Stop Rate Limiting! Capacity Management Done Right" by Jon Moore.

[Accessed Jan, 2021].

[61] The most popular database for modern apps | MongoDB. [Accessed Apr,

2021].

[62] Thoughts on (micro)services. [Accessed Jan, 2021].

[63] Tkrzw: a set of implementations of DBM. [Accessed Apr, 2021].

[64] Tutorial: Design and implementation of a simple Twitter clone using PHP

and the Redis key-value store. [Accessed Apr, 2021].

133

[65] Uncovering the magic: How serverless platforms really work! [Accessed

Jan, 2021].

[66] ut-osa/nightcore: Nightcore: Efficient and Scalable Serverless Computing

for Latency-Sensitive, Interactive Microservices. [Accessed Apr, 2021].

[67] Watchdog - OpenFaaS. [Accessed Jan, 2021].

[68] What are Microservices? | AWS. [Accessed Jan, 2021].

[69] What is a serverless microservice? | Serverless microservices explained.

[Accessed Dec, 2020].

[70] Why so slow? - Binaris Blog. [Accessed Jan, 2021].

[71] Worker threads | Node.js v14.8.0 Documentation. [Accessed Jan, 2021].

[72] Workers Durable Objects Beta: A New Approach to Stateful Serverless.

[Accessed Jan, 2021].

[73] Workflows | Google Cloud. [Accessed Apr, 2021].

[74] Write Concern — MongoDB Manual. [Accessed Apr, 2021].

[75] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight

virtualization for serverless applications. In 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 20), pages 419–434,

Santa Clara, CA, February 2020. USENIX Association.

134

[76] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik

Veeraraghavan. Challenges to adopting stronger consistency at scale. In

15th Workshop on Hot Topics in Operating Systems (HotOS XV), Kartause

Ittingen, Switzerland, May 2015. USENIX Association.

[77] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards high-

performance serverless computing. In 2018 USENIX Annual Technical Con-

ference (USENIX ATC 18), pages 923–935, Boston, MA, July 2018. USENIX

Association.

[78] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.

Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 Conference,

SIGCOMM ’10, page 63–74, New York, NY, USA, 2010. Association for

Computing Machinery.

[79] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. Disaggregation and

the application. In 12th USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud 20). USENIX Association, July 2020.

[80] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. Sprocket:

A serverless video processing framework. In Proceedings of the ACM Sym-

posium on Cloud Computing, SoCC ’18, page 263–274, New York, NY, USA,

2018. Association for Computing Machinery.

135

[81] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.

Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin,

Ion Stoica, and Matei Zaharia. Above the clouds: A berkeley view of

cloud computing. Technical Report UCB/EECS-2009-28, EECS Department,

University of California, Berkeley, Feb 2009.

[82] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed

Jafri, Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi,

Jingming Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang, Ahmed Yossef,

Francois Richard, and Yee Jiun Song. Virtual consensus in delos. In 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

20), pages 617–632. USENIX Association, November 2020.

[83] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler,

Michael Wei, and John D. Davis. CORFU: A shared log design for flash

clusters. In 9th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI 12), pages 1–14, San Jose, CA, April 2012. USENIX

Association.

[84] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prab-

hakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck.

Tango: Distributed data structures over a shared log. In Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP

’13, page 325–340, New York, NY, USA, 2013. Association for Computing

Machinery.

136

[85] Mahesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David Ger-

aghty, Jason Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh Ghosh, Mihir

Dharamshi, Jingming Liu, Filip Gruszczynski, Jun Li, Rounak Tibrewal, Ali

Zaveri, Rajeev Nagar, Ahmed Yossef, Francois Richard, and Yee Jiun Song.

Log-structured protocols in delos. In Proceedings of the 28th Symposium on

Operating Systems Principles, SOSP ’21, New York, NY, USA, 2021. Association

for Computing Machinery.

[86] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.

Attack of the killer microseconds. Commun. ACM, 60(4):48–54, March 2017.

[87] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos

Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating

system for high throughput and low latency. In 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 14), pages 49–65,

Broomfield, CO, October 2014. USENIX Association.

[88] Philip A. Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman. Opti-

mizing optimistic concurrency control for tree-structured, log-structured

databases. In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’15, page 1295–1309, New York, NY, USA,

2015. Association for Computing Machinery.

[89] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky. Putting

the “micro” back in microservice. In Proceedings of the 2018 USENIX Confer-

137

ence on Usenix Annual Technical Conference, USENIX ATC ’18, page 645–650,

USA, 2018. USENIX Association.

[90] Sol Boucher, Anuj Kalia, David G. Andersen, andMichael Kaminsky. Lightweight

preemptible functions. In 2020 USENIX Annual Technical Conference (USENIX

ATC 20), pages 465–477. USENIX Association, July 2020.

[91] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and

Jonathan Appavoo. Seuss: Skip redundant paths to make serverless fast. In

Proceedings of the Fifteenth European Conference on Computer Systems, Eu-

roSys ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[92] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy

Katz. Cirrus: A serverless framework for end-to-end ml workflows. In

Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19, page

13–24, New York, NY, USA, 2019. Association for Computing Machinery.

[93] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. Seeing is

believing: A client-centric specification of database isolation. In Proceedings

of the ACM Symposium on Principles of Distributed Computing, PODC ’17, page

73–82, New York, NY, USA, 2017. Association for Computing Machinery.

[94] Jeffrey Dean and Luiz André Barroso. The tail at scale. Commun. ACM,

56(2):74–80, February 2013.

[95] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-

lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,

138

Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available

key-value store. In Proceedings of Twenty-First ACM SIGOPS Symposium on

Operating Systems Principles, SOSP ’07, page 205–220, New York, NY, USA,

2007. Association for Computing Machinery.

[96] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and Robbert Van

Renesse. Scalog: Seamless reconfiguration and total order in a scalable

shared log. In 17th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 20), pages 325–338, Santa Clara, CA, February 2020.

USENIX Association.

[97] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang

Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup for

serverless computing with initialization-less booting. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’20, page 467–481, New

York, NY, USA, 2020. Association for Computing Machinery.

[98] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Chris-

tos Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to lambda:

Outsourcing everyday jobs to thousands of transient functional containers.

In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 475–488,

Renton, WA, July 2019. USENIX Association.

[99] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bala-

subramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George

139

Porter, and Keith Winstein. Encoding, fast and slow: Low-latency video

processing using thousands of tiny threads. In 14th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 17), pages 363–376,

Boston, MA, March 2017. USENIX Association.

[100] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan

Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin

Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen,

Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick

Lin, Zhongling Liu, Jake Padilla, and Christina Delimitrou. An open-source

benchmark suite for microservices and their hardware-software implications

for cloud & edge systems. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operat-

ing Systems, ASPLOS ’19, page 3–18, New York, NY, USA, 2019. Association

for Computing Machinery.

[101] PedroGarcía-López, Aleksander Slominski, Simon Shillaker, Michael Behrendt,

and Barnard Metzler. Serverless end game: Disaggregation enabling trans-

parency. arXiv preprint arXiv:2006.01251, 2020.

[102] S. Guo, R. Dhamankar, and L. Stewart. Distributedlog: A high performance

replicated log service. In 2017 IEEE 33rd International Conference on Data

Engineering (ICDE), pages 1183–1194, 2017.

[103] SangjinHan, ScottMarshall, Byung-GonChun, and Sylvia Ratnasamy. Megapipe:

A new programming interface for scalable network i/o. In Proceedings of the

140

10th USENIX Conference on Operating Systems Design and Implementation,

OSDI’12, page 135–148, USA, 2012. USENIX Association.

[104] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-

Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Serverless

computing: One step forward, two steps back. In CIDR 2019, 9th Biennial

Conference on Innovative Data Systems Research, Asilomar, CA, USA, January

13-16, 2019, Online Proceedings. www.cidrdb.org, 2019.

[105] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.

Zookeeper: Wait-free coordination for internet-scale systems. In Proceed-

ings of the 2010 USENIX Conference on USENIX Annual Technical Conference,

USENIXATC’10, page 11, USA, 2010. USENIX Association.

[106] Călin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Sya-

mala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen,

Jack Zhang, and Junhua Wang. Perfiso: Performance isolation for commer-

cial latency-sensitive services. In Proceedings of the 2018 USENIX Conference

on Usenix Annual Technical Conference, USENIX ATC ’18, page 519–531, USA,

2018. USENIX Association.

[107] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sungh-

wan Ihm, Dongsu Han, and KyoungSoo Park. Mtcp: A highly scalable

user-level tcp stack for multicore systems. In Proceedings of the 11th USENIX

Conference on Networked Systems Design and Implementation, NSDI’14, page

489–502, USA, 2014. USENIX Association.

141

[108] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing with

shared logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles CD-ROM, SOSP ’21, page 691–707, New York, NY, USA,

2021. Association for Computing Machinery.

[109] Zhipeng Jia and EmmettWitchel. Nightcore: Efficient and scalable serverless

computing for latency-sensitive, interactive microservices. In Proceedings of

the 26th ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS 2021, page 152–166, New

York, NY, USA, 2021. Association for Computing Machinery.

[110] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin

Recht. Occupy the cloud: Distributed computing for the 99%. In Proceedings

of the 2017 Symposium on Cloud Computing, SoCC ’17, page 445–451, New

York, NY, USA, 2017. Association for Computing Machinery.

[111] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag

Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,

Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and

David A. Patterson. Cloud programming simplified: A berkeley view on

serverless computing. Technical Report UCB/EECS-2019-3, EECS Depart-

ment, University of California, Berkeley, Feb 2019.

[112] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David

Mazières, and Christos Kozyrakis. Shinjuku: Preemptive scheduling for

µsecond-scale tail latency. In Proceedings of the 16th USENIX Conference on

142

Networked Systems Design and Implementation, NSDI’19, page 345–359, USA,

2019. USENIX Association.

[113] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Datacenter rpcs

can be general and fast. In Proceedings of the 16th USENIX Conference on

Networked Systems Design and Implementation, NSDI’19, page 1–16, USA,

2019. USENIX Association.

[114] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,

andDaniel Lewin. Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the world wide web. In Proceedings of

the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC

’97, page 654–663, New York, NY, USA, 1997. Association for Computing

Machinery.

[115] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion

Stoica. Jiffy: Elastic far-memory for stateful serverless analytics. In Proceed-

ings of the Seventeenth European Conference on Computer Systems, EuroSys

’22, page 697–713, New York, NY, USA, 2022. Association for Computing

Machinery.

[116] Martin Kleppmann and Jay Kreps. Kafka, samza and the unix philosophy of

distributed data. IEEE Data Eng. Bull., 38(4):4–14, 2015.

[117] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,

and Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless

143

analytics. In 13th USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI 18), pages 427–444, Carlsbad, CA, October 2018. USENIX

Association.

[118] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard

Bugnion. R2p2: Making rpcs first-class datacenter citizens. In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), pages 863–880, Renton, WA,

July 2019. USENIX Association.

[119] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Events can make

sense. In 2007 USENIX Annual Technical Conference on Proceedings of the

USENIX Annual Technical Conference, ATC’07, USA, 2007. USENIX Associa-

tion.

[120] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel,

and Thomas Anderson. Strata: A cross media file system. In Proceedings of

the 26th Symposium on Operating Systems Principles, SOSP ’17, page 460–477,

New York, NY, USA, 2017. Association for Computing Machinery.

[121] Butler W. Lampson. Hints for computer system design. In Proceedings of

the Ninth ACM Symposium on Operating Systems Principles, SOSP ’83, page

33–48, New York, NY, USA, 1983. Association for Computing Machinery.

[122] N. Lazarev, N. Adit, S. Xiang, Z. Zhang, and C. Delimitrou. Dagger: Towards

efficient rpcs in cloud microservices with near-memory reconfigurable nics.

IEEE Computer Architecture Letters, 19(2):134–138, 2020.

144

[123] Collin Lee and John Ousterhout. Granular computing. In Proceedings of the

Workshop on Hot Topics in Operating Systems, HotOS ’19, page 149–154, New

York, NY, USA, 2019. Association for Computing Machinery.

[124] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo

Phothilimthana. E3: Energy-efficient microservices on smartnic-accelerated

servers. In 2019 USENIX Annual Technical Conference (USENIX ATC 19),

pages 363–378, Renton, WA, July 2019. USENIX Association.

[125] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran, Daniel J.

Abadi, James Aspnes, Siddhartha Sen, and Mahesh Balakrishnan. The

fuzzylog: A partially ordered shared log. In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18), pages 357–372,

Carlsbad, CA, October 2018. USENIX Association.

[126] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octopus: an rdma-enabled

distributed persistent memory file system. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17), pages 773–785, Santa Clara, CA, July 2017.

USENIX Association.

[127] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean

Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C.

Evans, Steve Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl

Mauer, Emily Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Spring-

born, Paul Turner, Valas Valancius, Xi Wang, and Amin Vahdat. Snap: A

microkernel approach to host networking. In Proceedings of the 27th ACM

145

Symposium on Operating Systems Principles, SOSP ’19, page 399–413, New

York, NY, USA, 2019. Association for Computing Machinery.

[128] Ben Maurer. Fail at scale: Reliability in the face of rapid change. Queue,

13(8):30–46, September 2015.

[129] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi, Nathan

Bronson, and Wyatt Lloyd. I can’t believe it’s not causal! scalable causal

consistency with no slowdown cascades. In 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 17), pages 453–468,

Boston, MA, March 2017. USENIX Association.

[130] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren

Nayak, and Vadim Sukhomlinov. Agile cold starts for scalable serverless.

In 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19),

Renton, WA, July 2019. USENIX Association.

[131] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more

consensus in egalitarian parliaments. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13, page 358–372,

New York, NY, USA, 2013. Association for Computing Machinery.

[132] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea

Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK: Rapid task provisioning

with serverless-optimized containers. In 2018 USENIX Annual Technical

Conference (USENIX ATC 18), pages 57–70, Boston, MA, July 2018. USENIX

Association.

146

[133] Diego Ongaro and John Ousterhout. In search of an understandable consen-

sus algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC

14), pages 305–319, Philadelphia, PA, June 2014. USENIX Association.

[134] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari

Balakrishnan. Shenango: Achieving high cpu efficiency for latency-sensitive

datacenter workloads. In Proceedings of the 16th USENIX Conference on

Networked Systems Design and Implementation, NSDI’19, page 361–377, USA,

2019. USENIX Association.

[135] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind

Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The oper-

ating system is the control plane. In 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 14), pages 1–16, Broomfield, CO,

October 2014. USENIX Association.

[136] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu

Tian, Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. Optimus

prime: Accelerating data transformation in servers. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’20, page 1203–1216, New

York, NY, USA, 2020. Association for Computing Machinery.

[137] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achieving low

tail latency for microsecond-scale networked tasks. In Proceedings of the

147

26th Symposium on Operating Systems Principles, SOSP ’17, page 325–341,

New York, NY, USA, 2017. Association for Computing Machinery.

[138] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:

Scalable analytics on serverless infrastructure. In 16th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 19), pages 193–206,

Boston, MA, February 2019. USENIX Association.

[139] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout.

Arachne: Core-aware thread management. In Proceedings of the 13th USENIX

Conference on Operating Systems Design and Implementation, OSDI’18, page

145–160, USA, 2018. USENIX Association.

[140] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,

Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and

David A. Patterson. What serverless computing is and should become: The

next phase of cloud computing. Commun. ACM, 64(5):76–84, April 2021.

[141] Fred B. Schneider. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Comput. Surv., 22(4):299–319, December

1990.

[142] Srinath Setty, Chunzhi Su, Jacob R. Lorch, Lidong Zhou, Hao Chen, Parveen

Patel, and Jinglei Ren. Realizing the fault-tolerance promise of cloud storage

using locks with intent. In 12th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI 16), pages 501–516, Savannah, GA, November

2016. USENIX Association.

148

[143] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul

Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich,

and Ricardo Bianchini. Serverless in the wild: Characterizing and optimizing

the serverless workload at a large cloud provider. In 2020 USENIX Annual

Technical Conference (USENIX ATC 20), pages 205–218. USENIX Association,

July 2020.

[144] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina

Delimitrou, Robbert Van Renesse, and Hakim Weatherspoon. X-containers:

Breaking down barriers to improve performance and isolation of cloud-native

containers. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’19, page 121–135, New York, NY, USA, 2019. Association for Com-

puting Machinery.

[145] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for ef-

ficient stateful serverless computing. In 2020 USENIX Annual Technical

Conference (USENIX ATC 20), pages 419–433. USENIX Association, July 2020.

[146] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-

Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov.

Cloudburst: Stateful functions-as-a-service. Proc. VLDB Endow., 13(12):2438–2452,

July 2020.

[147] A. Sriraman and T. F. Wenisch. µsuite: A benchmark suite for microservices.

In 2018 IEEE International Symposium on Workload Characterization (IISWC),

149

pages 1–12, 2018.

[148] Akshitha Sriraman and Thomas F. Wenisch. µtune: Auto-tuned threading

for OLDI microservices. In 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18), pages 177–194, Carlsbad, CA, October

2018. USENIX Association.

[149] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnevmatikatos, and

A. Daglis. The nebula rpc-optimized architecture. In 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA), pages

199–212, 2020.

[150] T. Ueda, T. Nakaike, and M. Ohara. Workload characterization for microser-

vices. In 2016 IEEE International Symposium on Workload Characterization

(IISWC), pages 1–10, 2016.

[151] Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately com-

plex. ACM Comput. Surv., 47(3), February 2015.

[152] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz

Kharatishvili, and Xiaofeng Bao. Amazon aurora: Design considerations

for high throughput cloud-native relational databases. In Proceedings of

the 2017 ACM International Conference on Management of Data, SIGMOD

’17, page 1041–1052, New York, NY, USA, 2017. Association for Computing

Machinery.

150

[153] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric

Brewer. Capriccio: Scalable threads for internet services. In Proceedings

of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP

’03, page 268–281, New York, NY, USA, 2003. Association for Computing

Machinery.

[154] Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham, Maithem

Munshed, Medhavi Dhawan, Jim Stabile, Udi Wieder, Scott Fritchie, Steven

Swanson, Michael J. Freedman, and Dahlia Malkhi. vcorfu: A cloud-scale

object store on a shared log. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17), pages 35–49, Boston, MA,

March 2017. USENIX Association.

[155] Matt Welsh and David Culler. Adaptive overload control for busy internet

servers. In Proceedings of the 4th Conference on USENIX Symposium on

Internet Technologies and Systems - Volume 4, USITS’03, page 4, USA, 2003.

USENIX Association.

[156] Matt Welsh, David Culler, and Eric Brewer. Seda: An architecture for

well-conditioned, scalable internet services. SIGOPS Oper. Syst. Rev.,

35(5):230–243, October 2001.

[157] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Bet-

ter never than late: Meeting deadlines in datacenter networks. In Proceedings

of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, page 50–61, New

York, NY, USA, 2011. Association for Computing Machinery.

151

[158] Mingyu Wu, Ziming Zhao, Yanfei Yang, Haoyu Li, Haibo Chen, Binyu Zang,

Haibing Guan, Sanhong Li, Chuansheng Lu, and Tongbao Zhang. Platinum:

A cpu-efficient concurrent garbage collector for tail-reduction of interactive

services. In 2020 USENIX Annual Technical Conference (USENIX ATC 20),

pages 159–172. USENIX Association, July 2020.

[159] Jian Xu and Steven Swanson. NOVA: A log-structured file system for hybrid

volatile/non-volatile main memories. In 14th USENIX Conference on File and

Storage Technologies (FAST 16), pages 323–338, Santa Clara, CA, February

2016. USENIX Association.

[160] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and

Vincent Liu. Fault-tolerant and transactional stateful serverless workflows.

In 14th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20), pages 1187–1204. USENIX Association, November 2020.

[161] Irene Zhang, Niel Lebeck, Pedro Fonseca, Brandon Holt, Raymond Cheng,

Ariadna Norberg, Arvind Krishnamurthy, and Henry M. Levy. Diamond: Au-

tomating data management and storage for wide-area, reactive applications.

In 12th USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI 16), pages 723–738, Savannah, GA, November 2016. USENIX

Association.

[162] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,

and Dan R. K. Ports. Building consistent transactions with inconsistent

replication. In Proceedings of the 25th Symposium on Operating Systems

152

Principles, SOSP ’15, page 263–278, New York, NY, USA, 2015. Association

for Computing Machinery.

[163] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing the gap

between serverless and its state with storage functions. In Proceedings of the

ACM Symposium on Cloud Computing, SoCC ’19, page 1–12, New York, NY,

USA, 2019. Association for Computing Machinery.

[164] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and

John Wilkes. Cpi2: Cpu performance isolation for shared compute clusters.

In Proceedings of the 8th ACM European Conference on Computer Systems,

EuroSys ’13, page 379–391, New York, NY, USA, 2013. Association for Com-

puting Machinery.

[165] Y. Zhang, D. Meisner, J. Mars, and L. Tang. Treadmill: Attributing the source

of tail latency through precise load testing and statistical inference. In 2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture

(ISCA), pages 456–468, 2016.

[166] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui

Gu, Beng Chin Ooi, and Junfeng Yang. Overload control for scaling wechat

microservices. In Proceedings of the ACM Symposium on Cloud Comput-

ing, SoCC ’18, page 149–161, New York, NY, USA, 2018. Association for

Computing Machinery.

[167] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun

153

Zhao. Benchmarking microservice systems for software engineering re-

search. In Proceedings of the 40th International Conference on Software

Engineering: Companion Proceeedings, ICSE ’18, page 323–324, New York,

NY, USA, 2018. Association for Computing Machinery.

[168] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry Liu, Matthew

Rockett, Arvind Krishnamurthy, and Thomas Anderson. Slim: Os kernel

support for a low-overhead container overlay network. In Proceedings of the

16th USENIX Conference on Networked Systems Design and Implementation,

NSDI’19, page 331–344, USA, 2019. USENIX Association.

154

Vita

Zhipeng Jia was born and raised in an historic city — Nanjing, China. After

completing his work at Nanjing Foreign Language School in 2013, he entered

Tsinghua University, Beijing, for undergraduate study. At Tsinghua, he studied at

the Institute for Interdisciplinary Information Sciences (IIIS), led by Turing Award

laureate Andrew Chi-Chih Yao. He received the degree of Bachelor of Engineering

in Computer Science and Technology from Tsinghua University in 2017. In August

2017, he entered the doctoral program in the Department of Computer Science at

the University of Texas at Austin, where he received an M.S. degree in Computer

Science in December 2021.

Permanent address: zhipeng.jia@outlook.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

155

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Serverless computing for latency-sensitive microservices
	Stateful serverless computing with shared logs
	Organization of the dissertation

	Chapter 2. The Current State of Serverless Computing
	Challenge 1: High invocation latency in FaaS
	Challenge 2: State consistency with fault tolerance

	Chapter 3. Nightcore: Serverless Computing for Latency-Sensitive, Interactive Microservices
	Hunting for the ``killer microseconds''
	Nightcore design
	System architecture
	Processing function requests
	Managing concurrency for function executions

	Implementation
	Nightcore's engine
	Function workers

	Evaluation
	Methodology
	Benchmarks
	Analysis
	Discussion

	Microservice background
	Summary

	Chapter 4. Boki: Stateful Serverless Computing with Shared Logs
	Shared log approach for stateful serverless
	Use cases
	Technical challenges

	Boki's LogBook API
	Boki design
	Metalog is ``the answer to everything'' in Boki
	Architecture
	Workflow of log appends
	From physical logs to LogBooks
	Reconfiguration protocol

	Boki support libraries
	BokiFlow: fault-tolerant workflows
	BokiStore: durable object storage
	BokiQueue: message queues
	Optimizing log replay with auxiliary data
	Garbage collector functions

	Implementation
	Storage backend

	Evaluation
	Microbenchmarks
	BokiFlow: fault-tolerant workflows
	BokiStore: durable object storage
	BokiQueue: message queues
	Analysis

	Summary

	Chapter 5. Related Work
	Serverless computing
	Microservices
	System supports for microsecond-scale I/Os
	Stateful serverless computing
	Distributed shared logs
	Fault-tolerant workflows

	Chapter 6. Conclusion
	Bibliography
	Vita

