
Boki: Stateful Serverless Computing
with Shared Logs

Zhipeng Jia
University of Texas at Austin

Emmett Witchel
University of Texas at Austin and

Katana Graph

Today’s Serverless Computing

Function-as-a-service (FaaS)

Invoke cloud functions

def my_funcion(a, b):
 return a * b

For stateless functions, FaaS is
● Easy-to-use
● Highly elastic (1,000’s of concurrent functions)

Today’s Stateful Serverless Computing

Amazon S3

Amazon
DynamoDB

Amazon Simple
Queue Service

Stateful functions

State consistency with fault tolerance
is difficult with current infrastructure!

Amazon S3

Amazon
DynamoDB

Amazon Simple
Queue Service

Stateful function

Serverless application

Stateful function

Stateful function

?

?

?

Today’s Stateful Serverless Computing

Function X
(create person)

Example: Conference Registration App

uid = read_inc(table=id, key=“id”)

write(table=profile,
key=“name”+uid, “Zhipeng Jia”)

Invoke with uid

Function Y
(append attendees)

append_list(
table=conference, key=“SOSP21”, uid)

?

When failure happens, data stored in cloud database can be inconsistent

No easy way to detect and fix the inconsistency

Cloud
Database

Serverless application

?

Shared Logs: The Missing Piece in Serverless

a shared logread_inc write invoke append_list

The shared log as a write-ahead redo log for fault tolerance

Function X
(create person)

uid = read_inc(table=id, key=“id”)

write(table=profile,
key=“name”+uid, “Zhipeng Jia”)

Invoke with uid

Function Y
(append attendees)

append_list(
table=conference, key=“SOSP21”, uid)

Cloud
Database

Serverless application

Serverless application

Function X Function Y Function Z

a shared logcmdY

Shared Logs: The Missing Piece in Serverless

Append state machine
commands to the shared log

cmdX cmdZ

The shared log for state machine replication (SMR)

How to maintain a shared state
between concurrent functions
with consistency?

Serverless application

Function X Function Y Function Z

a shared logcmdY

Shared Logs: The Missing Piece in Serverless

cmdX cmdZ

Reconstruct the state
machine by reading the log

[cmdY, cmdX, cmdZ] [cmdY, cmdX, cmdZ] [cmdY, cmdX, cmdZ]

Total order provided by the shared log is the source of consistency

The shared log for state machine replication (SMR)

State machine:
cmdY + cmdX + cmdZ

Boki Runtime

Boki: FaaS + Shared Logs + Support Libraries

† Boki is the pronunciation of "簿記", meaning bookkeeping in Japanese

Boki’s LogBook API

Boki Support Libraries

BokiFlow BokiStore BokiQueue
Serverless Functions

FaaS Runtime
(Nightcore [ASPLOS ‘21]) Boki Shared Logs

Boki Support Libraries

Boki: FaaS + Shared Logs + Support Libraries

FaaS Runtime
(Nightcore [ASPLOS ‘21])

Boki’s LogBook API

Serverless Functions
BokiFlow BokiStore BokiQueue

Boki Shared Logs

Boki Runtime

LogBook: Shared Log API for Serverless Functions

0 1 2 3 4 5seqnum
Log records have unique, monotonic
sequence numbers (seqnum)data

A LogBook: an append-only log

LogBook: Shared Log API for Serverless Functions

0 1 2 3 4 5seqnum

data

A LogBook: an append-only log

tag set {a,b} {b} {b}{a}
Log records can have an optional
set of tags{ } { }

Tag is used for selective reads, so that records with the same
tag will form a logical sub-stream

Function Invocations Share a LogBook

0 1 2 3 4 5

{a,b} {b} {b}{a}

A LogBook: an append-only log

Function f

Function g

Function h

Serverless application

data

tag set

seqnum

{ } { }

Boki Support Libraries

Boki: FaaS + Shared Logs + Support Libraries

FaaS Runtime
(Nightcore [ASPLOS ‘21])

Boki’s LogBook API

Serverless Functions
BokiFlow BokiStore BokiQueue

Boki Shared Logs

Boki Runtime

Challenges for Serverless Shared Logs

● High Throughput
State-of-the-art shared log: 1M appends per second

Serverless environment requires Boki to efficiently support diverse use patterns
of shared logs

● Low Latency
Serverless environment disaggregates compute and storage
Low-latency reads can only be achieved by caching, and Boki has to address read consistency

● High Density
Many serverless applications have small resource use
Boki has to efficiently support a high density of small LogBooks

Boki’s Techniques

● Multiplexing LogBooks on internal physical logs, with log indices for
flexible log reads (achieve high density)

● Co-locating log indices and record caches with functions (achieve low
latency)

● Metalog design that jointly addresses log ordering, read consistency, and
fault tolerance (achieve high throughput, and bridge components together
as a distributed system)

Boki’s Techniques

● Multiplexing LogBooks on internal physical logs, with log indices for
flexible log reads

● Co-locating log indices and record caches with functions

● Metalog design that jointly addresses log ordering, read consistency, and
fault tolerance

LogBooks are Multiplexed onto Internal Physical Logs

Boki’s internal physical logs are distributed
shared logs with high-throughput

Physical log 1

Physical log 2

LogBooks are Multiplexed onto Internal Physical Logs

Physical log 1

Physical log 2

LogBook A LogBook B LogBook C LogBook D LogBook E

Every LogBook maps to
a physical log => Appending to the associated physical log

Appending to a LogBook

LogBooks are Multiplexed onto Internal Physical Logs

Physical log 1
(LogBooks A, D)

Physical log 2
(LogBooks B, C, E)

LogBook A LogBook B LogBook C LogBook D

A

B

D

C

A

E

D

B E

A

LogBook E

Every LogBook maps to
a physical log => Appending to the associated physical log

Appending to a LogBook

Boki is configured with a fixed number of physical logs,
but can support a high density of LogBooks

Boki Physical Logs are Sharded

Each log shard is stored on 3 storage nodes

log shard a

log shard b

log shard c

Sequencer a b c a b c

Total order:

A sequencer orders log records across shards to form a totally ordered log

Boki uses Scalog [NSDI ‘20]’s high-throughput ordering protocol

LogBooks and Log Shards?

Logical view
(LogBooks)

LogBook X Y X LogBook Y X

Physical view
(log shards)

shard a shard b shard c shard a shard b shard c

Initial idea: Assign every LogBook to some fixed log shard?
Advantage: Locating records for a LogBook is easy.

Drawback: Throughput of a LogBook will be limited to one shard !!

LogBooks and Log Shards?

Logical view
(LogBooks)

LogBook X Y X LogBook Y X

Physical view
(log shards)

shard a shard b shard c shard a shard b shard c

We want records from a LogBook can go to any shards
to enjoy the full throughput provided by the physical log.

Challenge: How to locate records for LogBook reads?

Building index for LogBook Reads

Log index
(book_id, tag) seqnums

…… [……]

(3, 2) [3, 6, 7, 9, 10, …]

logReadNext(book_id = 3,
min_seqnum = 8, tag = 2)

Boki’s log index groups records by (book_id, tag)

Building index for LogBook Reads

Log index
(book_id, tag) seqnums

…… [……]

(3, 2) [3, 6, 7, 9, 10, …]

logReadNext(book_id = 3,
min_seqnum = 8, tag = 2)

Boki’s log index groups records by (book_id, tag)

Storage nodes

seqnum=9

Log index only includes metadata of log records (small per-record footprint), so
that a single node can index an entire physical log

Boki’s Techniques

● Multiplexing LogBooks on internal physical logs, with log indices for
flexible log reads

● Co-locating log indices and record caches with functions

● Metalog design that jointly addresses log ordering, read consistency, and
fault tolerance

Function node
Function
container

……
(more containers)

Function
container

Read Locality: Log Index and Cache on Function Nodes

LogBook engine

LogBook engine process on each function node for
handling LogBook API requests from functions

Function node
Function
container

……
(more containers)

Function
container

Read Locality: Log Index and Cache on Function Nodes

LogBook engine

LogBook engine process on each function node for
handling LogBook API requests from functions

Log index is built and maintained by LogBook
engines

Log Index

Function node
Function
container

……
(more containers)

Function
container

Read Locality: Log Index and Cache on Function Nodes

LogBook engine

LogBook engine process on each function node for
handling LogBook API requests from functions

Log index is built and maintained by LogBook
engines

LogBook engines also cache log records, using
records’ unique seqnums as cache keys

Log Index
Record
cache

Function node
Function
container

……
(more containers)

Function
container

Read Locality: Log Index and Cache on Function Nodes

LogBook engine

LogBook engine process on each function node for
handling LogBook API requests from functions

Log index is built and maintained by LogBook
engines

LogBook engines also cache log records, using
records’ unique seqnums as cache keys

In the best case, LogBook reads can be served without leaving function node!

Log Index
Record
cache

Read Consistency?

Every function node will maintain log indices for a subset of physical logs, but not
all physical logs

To allow maximum flexibility, we want to serve log reads from any index of the
target physical log

How to ensure read consistency given multiple copies of log indices?

The shared log abstraction requires strong read consistency, i.e.,
read-your-write and monotonic reads

Boki’s Techniques

● Multiplexing LogBooks on internal physical logs, with log indices for
flexible log reads

● Co-locating log indices and record caches with functions

● Metalog design that jointly addresses log ordering, read consistency, and
fault tolerance

Sequencer (log ordering)

Boki’s Metalog Framework
Storage nodes
(store log shards)

log
Scalog’s protocol: periodically issues cut vectors
to form a total order across log shards

v0 v1 v2 v3

metalog

Order log records
across shards

Boki’s Metalog Framework
Storage nodes
(store log shards)

log
Scalog’s protocol: periodically issues cut vectors
to form a total order across log shards

v0 v1 v2 v3

metalog v0 v1 v2 v3

Sequencer maintains a metalog that records issued cut vectors

Metalog is also replicated on 2 other sequencers for fault tolerance

Order log records
across shards

Sequencer (log ordering)

Boki’s Metalog Framework
Storage nodes
(store log shards)

log

v0 v1 v2 v3

metalog v0 v1 v2 v3

Sequencer (log ordering)

A

Function nodes
(maintain log indices)

B C

D E F

Every cut vector in the metalog adds a new
batch of records to the physical log

LogBook engines (on function nodes) subscribe to the metalog
to incrementally build log index

Subscribe
the metalog

Read record metadata
for building index

Metalog as the Mechanism for Read Consistency

the log

0 1 2 3 4

Metalog positions (cuts in the physical log)

Metalog as the Mechanism for Read Consistency

A B C

Index replicas make progress independently,
so that they are actually inconsistent

the log

0 1 2 3 4

Metalog as the Mechanism for Read Consistency

A B C

the log

0 1 2 3 4

Boki maintains metalog positions
for log readers (i.e., functions),
indicating their observed statereads viaX B Fn f

3
Fn f 0

X

Metalog as the Mechanism for Read Consistency

A B C

the log

0 1 2 3 4

Boki performs consistency check
using metalog positions, and retry
the read later if the check failsFn f

3 wants to
read via A

Consistency
check fails

X

Violate monotonic read

Metalog as the Mechanism for Read Consistency

A B C

the log

0 1 2 3 4

Metalog position is also updated on
appending a new record, to ensure
read-your-writeFn f

3

X

appends Y Fn f
4

Y

Metalog as the Mechanism for Fault Tolerance

Control plane
(failure detection and

reconfiguration)

Storage nodes
(store log shards)

Function nodes
(maintain log indices)

Sequencer
(primary)

metalog v0 v1 v2 v3

Sequencer
(backup)

Sequencer
(backup)

Step 1: node failure
detected, and initiates
reconfiguration protocol

Metalog as the Mechanism for Fault Tolerance

Control plane
(failure detection and

reconfiguration)

Storage nodes
(store log shards)

Function nodes
(maintain log indices)

Sequencer
(primary)

metalog v0 v1 v2 v3

Sequencer
(backup)

Sequencer
(backup)

The metalog controls the global progress of a physical log

Stopping the progress of the metalog will stop the progress of
the entire system

Global progress

Metalog as the Mechanism for Fault Tolerance

Control plane
(failure detection and

reconfiguration)

Storage nodes
(store log shards)

Function nodes
(maintain log indices)

Sequencer
(primary)

metalog v0 v1 v2 v3

Sequencer
(backup)

Sequencer
(backup)

Boki uses Delos [OSDI ‘20]’s
fault-tolerant log sealing protocol

Step 2: seal the metalog
with all sequencers

Metalog as the Mechanism for Fault Tolerance

Control plane
(failure detection and

reconfiguration)

Storage nodes
(store log shards)

Function nodes
(maintain log indices)

Sequencer
(primary)

Sealed
metalog v0 v1 v2 v3

Sequencer
(backup)

Sequencer
(backup)

Step 3: metalog is
successfully sealed

Metalog as the Mechanism for Fault Tolerance

Control plane
(failure detection and

reconfiguration)

Storage nodes
(store log shards)

Function nodes
(maintain log indices)

Sequencer
(primary)

Sealed
metalog v0 v1 v2 v3

Sequencer
(backup)

Sequencer
(backup)

Step 3: metalog is
successfully sealed

All frozen as metalog is sealed

Metalog as the Mechanism for Fault Tolerance

Control plane
(failure detection and

reconfiguration)

Storage nodes
(store log shards)

Function nodes
(maintain log indices)

Sequencer
(primary)

Sealed
metalog v0 v1 v2 v3

Sequencer
(backup)

Sequencer
(backup)

All frozen as metalog is sealed

Step 4: set up a new
configuration

Metalog as the Mechanism for Fault Tolerance

Control plane
(failure detection and

reconfiguration)

Storage nodes
(store log shards)

Function nodes
(maintain log indices)

Sequencer
(primary)

Sequencer
(backup)

Sequencer
(backup)

Step 4: set up a new
configuration

metalog v0

In the new configuration, a new metalog is used

Boki Support Libraries

Ease the Usage of LogBooks for Serverless Functions

FaaS Runtime
(Nightcore [ASPLOS ‘21])

Boki’s LogBook API

Serverless Functions
BokiFlow BokiStore BokiQueue

Boki Shared Logs

Boki Runtime

BokiFlow: Fault-Tolerant Serverless Workflows
● Support workflows composing multiple stateful functions
● Provide strong end-to-end guarantees (i.e., exactly-once execution semantics)
● Based on Beldi [OSDI ‘20]’s log-based protocol for fault tolerance

BokiStore: Transactional Object Store
● Provide durable JSON objects to serverless functions
● Strong consistency (sequentially consistent) and transaction support
● Based on Tango [SOSP ‘13]’s techniques

BokiQueue: High-Throughput Message Queues
● Enable message passing and coordination between serverless functions
● Use vCorfu [NSDI ‘17]’s CSMR technique for scalability

Boki Support Libraries

1,137 LOC

1,207 LOC

369 LOC

Evaluation: Experiment Setup

● Test on AWS with EC2 instances
c5d.2xlarge VMs, each has 8 vCPU, 16GB DRAM, 200GB SSD, 10Gb NIC

● 3 storage nodes for each log shard
3 sequencer nodes for a metalog

Evaluation: Microbenchmark of LogBook Operations

Concurrent writers 320 640 1280 2560

Throughput (KOp/s) 130.8 279.2 604.4 1,159

Log append

Throughput scales to 1.2M appends per second
(p50 latency 2.03ms, p99 latency 6.42ms)

Log read

Local index
(cache hit)

Local index
(cache miss)

Remote
index

50% latency 0.12ms 0.57ms 0.79ms

99% latency 0.72ms 1.48ms 2.90ms

Read latency is 121μs in the best case

Evaluation: Serverless Workflows
Comparing BokiFlow with Beldi

Microbenchmarks of primitive operations
(main bars show 50% latencies, error bars show 99% latencies)

−63% −62%
−54%

−87%

Unsafe baseline
No mechanism for fault tolerance, so that state
can be inconsistent under workflow failures.

Beldi [OSDI ‘20]
Log-based protocols for fault tolerance. Beldi
builds logging layer over DynamoDB.

BokiFlow
Adapt Beldi’s techniques to work with Boki’s
LogBooks. Boki provides a more performant logging layer to

support Beldi’s fault-tolerance mechanisms

Evaluation: Serverless Workflows
Comparing BokiFlow with Beldi

Travel reservation workloadMovie review workload

4.7x lower 4.3x lower

54x lower 26x lower

Evaluation: Object Store
Comparing BokiStore with MongoDB on Retwis (a Twitter clone) workload

Throughput

Up to 25% higher throughput

Latency by request types

Executing transactions up to 2.3x faster

Evaluation: Message Queues
Comparing BokiQueue with Amazon SQS and Apache Pulsar

Message throughput

Amazon
SQS

Apache
Pulsar BokiQueue

64P/256C 6.08ms 7.39ms 3.70ms

256P/64C 99.8ms 7.81ms 6.61ms

256P/256C 12.1ms 8.21ms 7.96ms

Delivery latency (median)

66% ‒ 114% higher w.r.t Amazon SQS
6% ‒ 23% higher w.r.t Apache Pulsar

Also lower latencies compared to other systems

Conclusion

● Boki justifies the value of shared logs in stateful serverless, where shared
logs can provide mechanisms for consistency and fault tolerance

● Boki proposes novel shared log techniques to address unique challenges
introduced by the serverless environment

● Boki support libraries demonstrate how shared logs can support 3 different
serverless use cases, and evaluation of these libraries shows Boki can speed
up important workloads by up to 4.7x

Boki is open source at
github.com/ut-osa/boki

https://github.com/ut-osa/boki

Thank you!

