
Nightcore: Efficient and Scalable
Serverless Computing for

Latency-Sensitive, Interactive Microservices

Zhipeng Jia, Emmett Witchel
University of Texas at Austin

Motivation: Two Trends in Cloud Computing
Serverless functions / Function as a service (FaaS)

● User provides stateless functions, that are
executed on cloud provider’s infrastructure

● Benefits: elasticity, and pay-as-you-go billing

Microservices

● Organize online applications with single-purpose,
loosely-coupled microservices

● Benefits: composable software design

Motivation: Serverless Microservices
● Microservices are mostly implemented

as RPC servers

But not performant !! RPC servers AWS Lambda

median latency 2.34ms 26.94ms (11.5x)

tail latency 6.48ms 160.8ms (24.8x)

SocialNetwork microservices from DeathStarBench [ASPLOS ‘19]
Running under light load (100 QPS)

● Stateless RPC handlers naturally fit in
the FaaS paradigm

RPC servers stateless RPC handlers

RPC trace from SocialNetwork microservices

NGINX frontend

media
UploadMedia

(320μs)

compose-post
UploadMedia

(140μs)

user
UploadUserWithUserId

(300μs)

compose-post
UploadCreator

(130μs)

unique-id
UploadUniqueId

(330μs)

compose-post
UploadUniqueId

(140μs)

text
UploadText
(3640μs)

url-shorten
UploadUrls

(590μs)

compose-post
UploadUrls

(140μs)

user-mention
UploadUserMention

(690μs)

compose-post
UploadUserMention

(130μs)

compose-post
UploadText
(1710μs)

post-storage
StorePost
(260μs)

user-timeline
WriteUserTimeline

(650μs)

write-home-timeline
FanoutHomeTimelines

(640μs)

social-graph
GetFollows

(230μs)

New
Tweet

Stateful service

Stateless service
(running on FaaS)

NGINX frontend

media
UploadMedia

(320μs)

compose-post
UploadMedia

(140μs)

user
UploadUserWithUserId

(300μs)

compose-post
UploadCreator

(130μs)

unique-id
UploadUniqueId

(330μs)

compose-post
UploadUniqueId

(140μs)

text
UploadText
(3640μs)

url-shorten
UploadUrls

(590μs)

compose-post
UploadUrls

(140μs)

user-mention
UploadUserMention

(690μs)

compose-post
UploadUserMention

(130μs)

compose-post
UploadText
(1710μs)

post-storage
StorePost
(260μs)

user-timeline
WriteUserTimeline

(650μs)

write-home-timeline
FanoutHomeTimelines

(640μs)

social-graph
GetFollows

(230μs)

New
Tweet

Stateful service

Stateless service
(running on FaaS)

RPC trace from SocialNetwork microservices

NGINX frontend

media
UploadMedia

(320μs)

compose-post
UploadMedia

(140μs)

user
UploadUserWithUserId

(300μs)

compose-post
UploadCreator

(130μs)

unique-id
UploadUniqueId

(330μs)

compose-post
UploadUniqueId

(140μs)

text
UploadText
(3640μs)

url-shorten
UploadUrls

(590μs)

compose-post
UploadUrls

(140μs)

user-mention
UploadUserMention

(690μs)

compose-post
UploadUserMention

(130μs)

compose-post
UploadText
(1710μs)

post-storage
StorePost
(260μs)

user-timeline
WriteUserTimeline

(650μs)

write-home-timeline
FanoutHomeTimelines

(640μs)

social-graph
GetFollows

(230μs)

New
Tweet

Stateful service

Stateless service
(running on FaaS)

Observation 1:
μs-scale

execution time
RPC trace from SocialNetwork microservices

NGINX frontend

media
UploadMedia

(320μs)

compose-post
UploadMedia

(140μs)

user
UploadUserWithUserId

(300μs)

compose-post
UploadCreator

(130μs)

unique-id
UploadUniqueId

(330μs)

compose-post
UploadUniqueId

(140μs)

text
UploadText
(3640μs)

url-shorten
UploadUrls

(590μs)

compose-post
UploadUrls

(140μs)

user-mention
UploadUserMention

(690μs)

compose-post
UploadUserMention

(130μs)

compose-post
UploadText
(1710μs)

post-storage
StorePost
(260μs)

user-timeline
WriteUserTimeline

(650μs)

write-home-timeline
FanoutHomeTimelines

(640μs)

social-graph
GetFollows

(230μs)

New
Tweet

Stateful service

Stateless service
(running on FaaS)

RPC trace from SocialNetwork microservices

NGINX frontend

media
UploadMedia

(320μs)

compose-post
UploadMedia

(140μs)

user
UploadUserWithUserId

(300μs)

compose-post
UploadCreator

(130μs)

unique-id
UploadUniqueId

(330μs)

compose-post
UploadUniqueId

(140μs)

text
UploadText
(3640μs)

url-shorten
UploadUrls

(590μs)

compose-post
UploadUrls

(140μs)

user-mention
UploadUserMention

(690μs)

compose-post
UploadUserMention

(130μs)

compose-post
UploadText
(1710μs)

post-storage
StorePost
(260μs)

user-timeline
WriteUserTimeline

(650μs)

write-home-timeline
FanoutHomeTimelines

(640μs)

social-graph
GetFollows

(230μs)

New
Tweet

Stateful service

Stateless service
(running on FaaS)

1 request
= 15 fn invocations

Observation 2:
High invocation rate
(can be >100K/s)

RPC trace from SocialNetwork microservices

Performance Goals for Nightcore

Function
Execution Time

Invocation
Latency Invocation Rate

Current FaaS
runtime >100ms 1-10s of ms <10K/min

Current FaaS workloads: video processing, distributed compilation, data analytics, etc.

● Observation 1: μs-scale execution time
● Observation 2: high invocation rate (>100K/s)

Invocation latency: duration between function
request and the start of function execution

Performance Goals for Nightcore

Function
Execution Time

Invocation
Latency Invocation Rate

Current FaaS
runtime >100ms 1-10s of ms <10K/min

FaaS runtime for
microservices 100s of μs <100μs >100K/s

● Observation 1: μs-scale execution time
● Observation 2: high invocation rate (>100K/s)

Our performance goals
Invocation latency: duration between function

request and the start of function execution

Communications of the ACM | March 2017

Nightcore’s Goals are Challenging
Because We Are Vulnerable to Killer Microseconds

Microsecond-scale events:

● Networking
● TCP/IP stack
● RPC protocol
● Context switch
● Thread scheduling
● ……

Where hides our killer
microseconds?

Nightcore Design
Hunting for “the killer microseconds” in the regime of FaaS

Nightcore’s Techniques

● Optimizing locality of internal function calls
● High optimizations for local I/Os

○ Low-latency message channels
○ Event-driven concurrency

● Managing per-microservice concurrency to mitigate load variation

Nightcore’s Techniques

● Optimizing locality of internal function calls
● High optimizations for local I/Os

○ Low-latency message channels
○ Event-driven concurrency

● Managing per-microservice concurrency to mitigate load variation

High-Level Design of a FaaS Runtime
Separation of frontend and backend

● Adopted by Apache OpenWhisk
and OpenFaaS

● Scaling the system by adding
backends

Frontend
(e.g. API gateway)

Backend (e.g. VM)

Execution
environment
(e.g. container)

……

Backend (e.g. VM)

Execution
environment
(e.g. container)

……

More
backends

……

Dispatch to
backends

Function invocation requests

NGINX frontend

media
UploadMedia

(320μs)

compose-post
UploadMedia

(140μs)

user
UploadUserWithUserId

(300μs)

compose-post
UploadCreator

(130μs)

unique-id
UploadUniqueId

(330μs)

compose-post
UploadUniqueId

(140μs)

text
UploadText
(3640μs)

url-shorten
UploadUrls

(590μs)

compose-post
UploadUrls

(140μs)

user-mention
UploadUserMention

(690μs)

compose-post
UploadUserMention

(130μs)

compose-post
UploadText
(1710μs)

post-storage
StorePost
(260μs)

user-timeline
WriteUserTimeline

(650μs)

write-home-timeline
FanoutHomeTimelines

(640μs)

social-graph
GetFollows

(230μs)

New
Tweet

Stateful service

Stateless service
(running on FaaS)

RPC trace from SocialNetwork microservices

NGINX frontend

media
UploadMedia

(320μs)

compose-post
UploadMedia

(140μs)

user
UploadUserWithUserId

(300μs)

compose-post
UploadCreator

(130μs)

unique-id
UploadUniqueId

(330μs)

compose-post
UploadUniqueId

(140μs)

text
UploadText
(3640μs)

url-shorten
UploadUrls

(590μs)

compose-post
UploadUrls

(140μs)

user-mention
UploadUserMention

(690μs)

compose-post
UploadUserMention

(130μs)

compose-post
UploadText
(1710μs)

post-storage
StorePost
(260μs)

user-timeline
WriteUserTimeline

(650μs)

write-home-timeline
FanoutHomeTimelines

(640μs)

social-graph
GetFollows

(230μs)

New
Tweet

Stateful service

Stateless service
(running on FaaS)

Inter-service calls
 (to)

They’re internal
w.r.t. FaaS system

RPC trace from SocialNetwork microservices

Observation: High Ratio of Internal Calls
Function calls that are internal w.r.t. FaaS system

Frequent in microservices

Microservice
workloads

Social Network Movie
Reviewing

Hotel
Reservation

Hipster
Shopwrite mixed

% of internal fn calls 66.7% 62.3% 69.2% 79.2% 85.1%

Optimizing Locality for Internal Function Calls

Frontend
(e.g. API gateway)

Backend (e.g. VM)

Execution
environment
(e.g. container)

……

Backend (e.g. VM)

Execution
environment
(e.g. container)

……

Internal function calls always
go through frontend

Backend

Fn container 1

Fn container 2

Internal
function call

External function call
(from frontend)

Skip frontend for internal
function calls

Overview of Nightcore

 Worker server

Gateway

Nightcore’s Engine

Fn1:

Fn2:

FnN:
Fn container

……

Launcher

Fn worker

Nightcore’s
runtime library

fast path for
internal function call

Per-Fn dispatching queues

Worker threads

Docker
container ProcessVM or Bare

metal machine

(more function containers)

User-provided
function code

Overview of Nightcore

 Worker server

Gateway

Nightcore’s Engine

Fn1:

Fn2:

FnN:
Fn container

……

Launcher

Fn worker

Nightcore’s
runtime library

fast path for
internal function call

Per-Fn dispatching queues

Worker threads

Docker
container ProcessVM or Bare

metal machine

(more function containers)

User-provided
function code

Frontend and
Backend

Overview of Nightcore

 Worker server

Gateway

Nightcore’s Engine

Fn1:

Fn2:

FnN:
Fn container

……

Launcher

Fn worker

Nightcore’s
runtime library

fast path for
internal function call

Per-Fn dispatching queues

Worker threads

Docker
container ProcessVM or Bare

metal machine

(more function containers)

User-provided
function code

Fast path for
internal function calls

Function Containers
Execution environments for

serverless functions

 Worker server

Gateway

Nightcore’s Engine

Fn1:

Fn2:

FnN:
Fn container

……

Launcher

Fn worker

Nightcore’s
runtime library

fast path for
internal function call

Per-Fn dispatching queues

Worker threads

Docker
container ProcessVM or Bare

metal machine

(more function containers)

User-provided
function code

Function Containers
Execution environments for

serverless functions

 Worker server

Gateway

Nightcore’s Engine

Fn1:

Fn2:

FnN:
Fn container

……

Launcher

Fn worker

Nightcore’s
runtime library

fast path for
internal function call

Per-Fn dispatching queues

Worker threads

Docker
container ProcessVM or Bare

metal machine

(more function containers)

User-provided
function code

Launcher launches
new function workers,

and worker threads

Nightcore’s Engine
The main Nightcore process

running on each worker server

 Worker server

Gateway

Nightcore’s Engine

Fn1:

Fn2:

FnN:
Fn container

……

Launcher

Fn worker

Nightcore’s
runtime library

fast path for
internal function call

Per-Fn dispatching queues

Worker threads

Docker
container ProcessVM or Bare

metal machine

(more function containers)

User-provided
function code

Nightcore’s Engine
The main Nightcore process

running on each worker server

 Worker server

Gateway

Nightcore’s Engine

Fn1:

Fn2:

FnN:
Fn container

……

Launcher

Fn worker

Nightcore’s
runtime library

fast path for
internal function call

Per-Fn dispatching queues

Worker threads

Docker
container ProcessVM or Bare

metal machine

(more function containers)

User-provided
function code

Receive external function
requests from Gateway

Nightcore’s Engine
The main Nightcore process

running on each worker server

 Worker server

Gateway

Nightcore’s Engine

Fn1:

Fn2:

FnN:
Fn container

……

Launcher

Fn worker

Nightcore’s
runtime library

fast path for
internal function call

Per-Fn dispatching queues

Worker threads

Docker
container ProcessVM or Bare

metal machine

(more function containers)

User-provided
function code

Dispatch function requests
to worker threads

Nightcore’s Engine
The main Nightcore process

running on each worker server

 Worker server

Gateway

Nightcore’s Engine

Fn1:

Fn2:

FnN:
Fn container

……

Launcher

Fn worker

Nightcore’s
runtime library

fast path for
internal function call

Per-Fn dispatching queues

Worker threads

Docker
container ProcessVM or Bare

metal machine

(more function containers)

User-provided
function code

Fast path for
internal function calls

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Nightcore’s
runtime library

①

Worker of FnX

Nightcore’s
runtime library

⑤

Worker of FnY

Invoke FnY ②

⑧⑦

Worker server

.. xFnX:

③

① Fny invoked via Nightcore’s runtime API

Internal Function Request
Gateway

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Nightcore’s
runtime library

①

Worker of FnX

Nightcore’s
runtime library

⑤

Worker of FnY

Invoke FnY ②

⑧⑦

Worker server

.. xFnX:

③

① Fny invoked via Nightcore’s runtime API

② Reqy sent to Nightcore’s engine

Internal Function Request
Gateway

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Nightcore’s
runtime library

①

Worker of FnX

Nightcore’s
runtime library

⑤

Worker of FnY

Invoke FnY ②

⑧⑦

Worker server

.. xFnX:

③

① Fny invoked via Nightcore’s runtime API

② Reqy sent to Nightcore’s engine

③ Place reqy in the dispatching queue

Internal Function Request
Gateway

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Nightcore’s
runtime library

①

Worker of FnX

Nightcore’s
runtime library

⑤

Worker of FnY

Invoke FnY ②

⑧⑦

Worker server

.. xFnX:

③

① Fny invoked via Nightcore’s runtime API

② Reqy sent to Nightcore’s engine

③ Place reqy in the dispatching queue

④ Dispatch Reqy to worker of Fny

Internal Function Request
Gateway

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Nightcore’s
runtime library

①

Worker of FnX

Nightcore’s
runtime library

⑤

Worker of FnY

Invoke FnY ②

⑧⑦

Worker server

.. xFnX:

③

① Fny invoked via Nightcore’s runtime API

② Reqy sent to Nightcore’s engine

③ Place reqy in the dispatching queue

④ Dispatch Reqy to worker of Fny

⑤ Worker thread executes code of Fny

Internal Function Request
Gateway

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Nightcore’s
runtime library

①

Worker of FnX

Nightcore’s
runtime library

⑤

Worker of FnY

Invoke FnY ②

⑧⑦

Worker server

.. xFnX:

③

① Fny invoked via Nightcore’s runtime API

② Reqy sent to Nightcore’s engine

③ Place reqy in the dispatching queue

④ Dispatch Reqy to worker of Fny

⑤ Worker thread executes code of Fny

⑥ Execution of reqy completed

Internal Function Request
Gateway

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Nightcore’s
runtime library

①

Worker of FnX

Nightcore’s
runtime library

⑤

Worker of FnY

Invoke FnY ②

⑧⑦

Worker server

.. xFnX:

③

① Fny invoked via Nightcore’s runtime API

② Reqy sent to Nightcore’s engine

③ Place reqy in the dispatching queue

④ Dispatch Reqy to worker of Fny

⑤ Worker thread executes code of Fny

⑥ Execution of reqy completed

⑦ Send output back to worker of Fnx

Internal Function Request
Gateway

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Nightcore’s
runtime library

①

Worker of FnX

Nightcore’s
runtime library

⑤

Worker of FnY

Invoke FnY ②

⑧

Gateway

⑦

Worker server

.. xFnX:

③

① Fny invoked via Nightcore’s runtime API

② Reqy sent to Nightcore’s engine

③ Place reqy in the dispatching queue

④ Dispatch Reqy to worker of Fny

⑤ Worker thread executes code of Fny

⑥ Execution of reqy completed

⑦ Send output back to worker of Fnx

⑧ Execution flow returns back to code of Fnx

Internal Function Request

④

⑥Nightcore’s Engine

.. yFnY:

Dispatching queues

Nightcore’s
runtime library

①

Worker of FnX

Nightcore’s
runtime library

⑤

Worker of FnY

Invoke FnY ②

⑧

Gateway

⑦

Worker server

.. xFnX:

③

① Fny invoked via Nightcore’s runtime API

② Reqy sent to Nightcore’s engine

③ Place reqy in the dispatching queue

④ Dispatch Reqy to worker of Fny

⑤ Worker thread executes code of Fny

⑥ Execution of reqy completed

⑦ Send output back to worker of Fnx

⑧ Execution flow returns back to code of Fnx

Internal Function Request

Nightcore’s Techniques

● Optimizing locality of internal function calls
● High optimizations for local I/Os

○ Low-latency message channels
○ Event-driven concurrency

● Managing per-microservice concurrency to mitigate load variation

Nightcore’s Low-Latency Message Channel
We need IPC primitive for function worker I/Os

● One straightforward option ―a feature-rich RPC framework like gRPC
● But wait, RPC protocols have μs-scale overheads (killer microseconds!)

Nightcore builds its own message channels for best performance

● Built on top of OS pipes
● Transmit fixed-size 1KB messages

Deliver messages in 3.4μs
● In contrast, gRPC over Unix sockets takes 13μs for sending 1KB RPC payloads

Nightcore’s Low-Latency Message Channel

Distribution of RPC sizes across microservices in DeathStarBench

Why choosing 1KB as the message size?

Event-Driven Concurrency for Best Efficiency

Small number
of I/O threads

Gateway

Engine’s
I/O thread #1

Persistent TCP connection
Connected to I/O thread
with message channels

FnYFnX

FnZFnY

FnZFnX

FnZFnX

FnXFnZ

FnYFnX

FnX Function worker thread

FnX Launcher process

Engine’s
I/O thread #2

Engine’s
I/O thread #3 4 threads are

sufficient for
an invocation
rate of 100K/s

Nightcore’s Techniques

● Optimizing locality of internal function calls
● High optimizations for local I/Os

○ Low-latency message channels
○ Event-driven concurrency

● Managing per-microservice concurrency to mitigate load variation

Internal Load Variations within Microservices

Timeline of CPU utilization
Running SocialNetwork microservices at

a fixed request rate

Why this happens?

Stage-based nature of microservices
→ Complex internal load dynamics

NGINX frontend

media
UploadMedia

(320μs)

compose-post
UploadMedia

(140μs)

user
UploadUserWithUserId

(300μs)

compose-post
UploadCreator

(130μs)

unique-id
UploadUniqueId

(330μs)

compose-post
UploadUniqueId

(140μs)

text
UploadText
(3640μs)

url-shorten
UploadUrls

(590μs)

compose-post
UploadUrls

(140μs)

user-mention
UploadUserMention

(690μs)

compose-post
UploadUserMention

(130μs)

compose-post
UploadText
(1710μs)

post-storage
StorePost
(260μs)

user-timeline
WriteUserTimeline

(650μs)

write-home-timeline
FanoutHomeTimelines

(640μs)

social-graph
GetFollows

(230μs)

New
Tweet

Stateful service

Stateless service
(running on FaaS)

Rate of 100 QPS

What is the load for
each ???

RPC trace from SocialNetwork microservices

Internal Load Variations within Microservices

Timeline of CPU utilization
Running SocialNetwork microservices at

a fixed request rate

Why this happens?

Stage-based nature of microservices
→ Complex internal load dynamics

Overusing concurrency for bursty load
→ Worse overall performance

Nightcore’s Managed Concurrency
Per-function concurrency target

● Limiting concurrent execution
→ Prevent overuse of concurrency

● Dynamically computed with input load

(concurrency target) =
(invocation rate) ⨉ (function execution time)

Computed by exponential weight average

Timeline of CPU utilization
Running SocialNetwork microservices at

a fixed request rate

“Flatten the curve”

Nightcore’s Managed Concurrency

Adaptive to
load changes

Finally, Do We Achieve Our Performance Goals?

FaaS Systems
Invocation Latency

50th 99th 99.9th

AWS Lambda 10.4ms 25.8ms 59.9ms

OpenFaaS 1.09ms 3.66ms 5.54ms

Nightcore
(external function calls) 285μs 536μs 855μs

Nightcore
(internal function calls) 39μs 107μs 154μs

Evaluation
A nightcore edit is a cover track that speeds up the
pitch and time of its source material by 10–30%.

Benchmark Workloads
DeathStarBench [ASPLOS ‘19]

● SocialNetwork
● MovieReviewing
● HotelReservation

Google’s HipsterShop microservices

Ported
services

RPC
framework Languages

Social
Network 11 Apache

Thrift C++

Movie
Reviewing 12 Apache

Thrift C++

Hotel
Reservation 11 gRPC Go

HipsterShop 13 gRPC Go, Node.js,
Python

RPC servers ― non-serverless deployment of microservices

OpenFaaS ― FaaS system deployed in the same way as Nightcore

Systems for Comparison

Single-Server Experiment
OpenFaaS and Nightcore: one worker VM runs all functions

RPC servers: one VM runs all RPC servers

X-axis: throughput (QPS)

Upper chart: median latency

Lower chart: tail latency

RPC servers ―the ordinary choice for microservices

OpenFaaS ―microservices on FaaS, but a worse choice

Nightcore ―let FaaS shine for microservices

1.27x to 1.59x higher throughput
up to 34% reduction in tail latencyNightcore v.s. RPC servers

Performance Evaluation of Nightcore Designs

1/3 throughput of
RPC servers

Performance Evaluation of Nightcore Designs

throughput closed
to RPC servers

much better tail
latency

Performance Evaluation of Nightcore Designs

slightly better than
RPC servers

Performance Evaluation of Nightcore Designs

1.33x higher
throughput than
RPC servers

Weak Scaling of Nightcore

(a) SocialNetwork (b) MovieReviewing

(c) HotelReservation (d) HipsterShop

Note: N servers run N times of
the request load of 1 server

Similar median latency
with more servers

Weak Scaling of Nightcore

(a) SocialNetwork (b) MovieReviewing

(c) HotelReservation (d) HipsterShop

Note: N servers run N times of
the request load of 1 server

Similar (or better) tail
latency with more servers

Except MovieReviewing
with 8 servers
But we see a similar spike
in tail latencies when using
8 RPC servers

Comparison (8 Servers)

Throughput
(higher is better)

Tail Latency
(lower is better)

OpenFaaS Nightcore OpenFaaS Nightcore

SocialNetwork 0.29x 1.33x 3.40x 0.34x

MovieReviewing 0.30x 1.36x 4.44x 0.98x

HotelReservation 0.28x 2.93x 0.96x 1.06x

HipsterShop 0.38x 1.87x 1.80x 0.31x

RPC servers as the baseline (1.0x)

Comparison (8 Servers)

28% to 38% of throughput

increase tail latency by up
to 4.4x

OpenFaaS v.s. RPC servers

RPC servers as the baseline (1.0x)

Throughput
(higher is better)

Tail Latency
(lower is better)

OpenFaaS Nightcore OpenFaaS Nightcore

SocialNetwork 0.29x 1.33x 3.40x 0.34x

MovieReviewing 0.30x 1.36x 4.44x 0.98x

HotelReservation 0.28x 2.93x 0.96x 1.06x

HipsterShop 0.38x 1.87x 1.80x 0.31x

Comparison (8 Servers)

1.4x to 2.9x higher
throughput

up to 69% reduction in tail
latency

Nightcore v.s. RPC servers

RPC servers as the baseline (1.0x)

Throughput
(higher is better)

Tail Latency
(lower is better)

OpenFaaS Nightcore OpenFaaS Nightcore

SocialNetwork 0.29x 1.33x 3.40x 0.34x

MovieReviewing 0.30x 1.36x 4.44x 0.98x

HotelReservation 0.28x 2.93x 0.96x 1.06x

HipsterShop 0.38x 1.87x 1.80x 0.31x

Conclusion
Nightcore is a FaaS runtime for μs-scale microservices

Nightcore includes diverse techniques to eliminate μs-scale overheads

Nightcore achieves 1.4x–2.9x higher throughput than containerized RPC servers,
and up to 69% reduction in tail latency

“Make it fast, rather than general or powerful”
(Butler W. Lampson, Hints for Computer System Design)

Nightcore is open source at
github.com/ut-osa/nightcore

